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INTRODUCTION




Nohvations:

vwhy modify gravity

- Modifying gravity - explain Dark energy, cosmological constant problem, to
cure non-renormalizability problem, theoretical curiosity etc.

- There are many ways to modify gravity: f(R), scalar-tensor theories,
Galileons, Horndeski theory, KGB, Fab-four, higher-dimensions, DGP,
massive gravity...

massive gravity

- Naively, cancellation of the cosmological constant,
because of the Yukawa decay;

- Small cosmological constant due to small m



Nassive gravity:

problems

Physical ghost

USUAL PROBLEMS

When modifying gravity, extra degrees of freedom _ ,
YINE € / & of massive gravity

appear, which alter gravitational interaction
between bodies




Fierz-Paull massive gravity

Expand the Einstein-Hilbert action:

Juv — Nuv =+ h,uy
1
Sar = M3 / d*z\/—gR = / d*x <—§ngfha5> + O(h?)

1 1 1 1 1
EM hop = = 50u0uh = 50Ny + S0p0uhl) + 50,0,hf; = 51 (9°0% hpo — TIh)

2 propagating spin: 2 massless gravitons, spin-2

% = %+ €%, hy = —Euw — &y



Fierz-Paull massive gravity

Fierz-Pauli action (Fierz&Pauli’39):

1 1
Spe = 113 [ ' hwgﬁmﬁ — L (b hz)}

Linearized Einstein- mass term
Hilbert term

rT = ) = —Suw — Sun

5 healthy degrees of freedom (because of a particular choice of the potential, h=0)
for a generic mass term 6 d.o.f., one is necessary Ostrogradski ghost

Non-linear completion ?



Non-linear massive gravity

potential for metric

Need to construct a mass term -> introduce an extra metric

9. :physical metric, matter couples to it

fuv :an extra metric (may be dynamical or fixed)

Construct a potential, following the rules:

- general covariance under diffeomorphisms (common to the two metrics)

- has flat spacetime as solution for physical metric (or not, for cosmology)

- when expanding around flat metric the potential takes a specific form, the

Pauli-Fierz form



Non-linear massive gravity

potential for metric

building block: g~ *f

1
Sz(fbi = —§m2Ml%/d4x vV —f HuwHyr (fF°F7 — fEYf°7)  (Boulware & Deser72)

|
3 o VT vV OT
Sl = —3m Mp / d*z /=g HuHor (6"79"7 — 9" 9°7)  (Akani-Hamed et al03)

where H,, = g, — fu



Non-linear massive gravity

Exira degrees of freedom

New degrees of freedom due to the broken diff invariance =>

Non-linear effects restore General Relativity in some region

due to the non-linear effects
Vainshtein’72
EB,Deffayet,Ziour’09'10




Non-linear massive gravity

Boulvware-Deser ghost

Generically there are two propagating
scalars: one Is a ghost !

(Boulware & Deser72)



dRGCT

im =B =]=[=]

Massive gravity without Boulware-Deser ghost (de Rham-Gabadabze-Tolley’10)

g is physical metric;
f is fixed (flat) or extra dynamical metric.

K =1— \/g_lf, U :Z/{Q —|—O£3Z/{3 —|—Oé42/{4

s (1) = 5 (K = [K?)
U () = ¢ (IKF° — BKIK?] + 21K°))
1y () = o= (IK)* — 6[KI?IK?] + 3?2 + S]] — 6lKc)

S = M2 / dia/=g (Rég] - m2Ug, f] —m2Ag>
M /d4x\/ff(n[f] — m2Ay)

2




Equsations of motion

G, 18 the Einstein tensor for metric g,

> G, 1s the Einstein tensor for metric f,,

No matter Lagrangian.
The energy-momentum tensor from interaction term:

4 )
T =Ugu, — 2% = [function of K]
ou 7o
T = —2 S function of K]




BLACK HOLES




Black holes

Schvvarzschild metric

Ansatz (bi-Eddington-Finkelstein form):

ds? = — (1 — T—g) dv? + 2dvdr + r2dQ?,

g r

ds?c — (C* {— (1 — T—f) dv? + 2dvdr + rdeQ}

(A

Non-diagonal term from interaction:

C (B(C—1)?—2a(C—1)4+1) (rf —ry)
2r

Trv — _T?;J —

a=1+a3, 0 =a3+ au

These must vanish due to the Einstein equations and the ansatz for the
metrics



Black holes

Schvvarzschild metric

| Tg =TF bi-diagonal
Two choices: {5(0 B 1)2 —20(C—1)+1=0 non-bidiagonal

Also we need to tune the cosmological
constants to balance the diagonal part:

Ay =—(C—-1)(B(C —-1)*=3a(C—-1)+3),

Ay = (C*(1—a+pB)—3C*B+3C(a+B) —2a—LF—1)

kO3



Black holes

Charged black holes

Ansatz (bi-Eddington-Finkelstein form):

r2 2
dsy = — <1 -2 —622 - T—2> dv® + 2dvdr + r*dQ?, 0
r r lg Au — {_7()7()70}
) : ] .
dS?‘ =" | = ( U %) dv? + 2dvdr + r*d€)?
r
! 7 _

(A2 0 0 0 )
o _ | T AR 00
g 0 0 AY 0

\ 0 0 0 AY)

AY = —(C —1) ((B(C —1)* = 3a(C — 1) + 3))

r 9 g — Ty ’Fé ré 7
T =——=(8(C -1 —=2a(C —1)+1) 2 -



Black holes

Charged black holes

Both sets of the Einstein equations are satisfied by,

B(C —1)? -2a(C —1)+1=0,
\/§MPTQ — Qa

(C=1((BC-1)"=3a(C—1)+3)) + A, = :

2727
mlg

3

1

——— (C*1—a+8) - 3C*B+3C(a+p) —2a—f—1) + Ay =

kC'3 CQmQZ?



Black holes

Charged black holes - special choice of potential
f=a’

ds? = — gy, dv* + 2g,-dvdr + g..dr® + r*dQ°,

g = —

ds? = (" [—fdeQ + 2f, dvdr + f,.dr® + TdeQ]

C=1+—
87

The Einstein equations are satisfied.

A change of coordinates is allowed in each metric

v—v(v,r), r—=r(v,T).



Black holes

Rotating solutions

Original Kerr metric

dsg — _ ( — %) (dv + @ sin® 9d¢)2
+ 2 (dv + asin®0dg) (dr + asin®0de) + p* (d6? + sin” 0dp?)

0> = 1?4+ a*cos’d
f is fixed, but unusual form
ds?c =C" [—va + 2dvdr + 2a sin® Odrde + p*df* + (T2 + a2) sin” 6d(b2]

Obtained from ds3; = —dt* + dx* + dy* + dz*
by:
t=v—r, x+iy=(r—ia)e’siné, z =rcosf

r—Cr, v—Cv, a— Ca



Black holes

Rotating solutions

Only non-diagonal terms of  K¥, are K", K",

( Ay 0 0 0 \
o _ | T X 0T,
v 0 0 X, O
\ 0 0 0 A )
T = — (B(C = 1)* = 2a(C — 1) + 1) Cryr
() 2p2 )
. Car,rsin® 0
T, =—(8(C—1)°=2a(C—1)+1) ng2

Ag=—(C—=1)(8(C=1)? = 3a(C—1) +3)

Condition
B(C—1)*—2a(C—-1)+1=0



PERTURBATIONS




FPerturbations

spherically symmetiric ansatz for perturbations

Perturbations of both metrics

G = Gy + Wi, fuw = £+ hil)

2
SGH = m25T",, 6GH = - § (—V_QTMV) .
kAT

Z?5> Eri Z?ﬁb Eri 8 8
vT (e T (e
g —eon | OO @5
I 0 0 2, 0
0 0 0 hig) ()
r?2 sin? 6
W)= by = Chiyy e () = hig(r) = h{p (1)



FPerturbations

spherically symmetiric ansatz for perturbations

Perturbations of both metrics

G = Gy + Wi, fuw = £+ hil)

2
SGH = m25T",, 6GH = - § (—V_QTMV) .
kAT

e e 0
w e | R ) 0 0 -0
i = = RO (r)
C 0 0 ) 0
0 0 0 h{s (r)
r2 sin? 6
Wiy = higy — C°h) e hi®y(r) = hig(r) = hp(r)



FPerturbations

spherically symmetiric ansatz for perturbations

The advanced time v is regular at the future horizon, we require

hi, s (1) to be regular at the horizons

At infinity, instead, it is more suitable to use the Schwarzschild time ¢ ~ v —r
to separate between temporal and spatial components.

In the asymptotic region i, (r) must behave as o (e7) to be

physically acceptable.



Non-bidiagonal case

perfurbed sitress tensor and constraints

2 —
5GP = m26TH ,  §GH = s (;QTMV> .
v C\V=T

B(C —1)* —2a(C —1)+1=0

0 0 0 0
00
srn _ Alrs —14) g, hiZy 0 hg 0
v Ar 0 0 X2 g
0o 0 0 o
4o 2Be -1 -1 .
-1




Non-bidiagonal case

perfurbed sitress tensor and constraints

/=g )
V(o (\/TfTL'L/ o V(pol®, =0

A(T _Tf) Qu /
yremail { (h( )) (),00} 0.

Solution of the above equation

v 66 Co
hioy =0, hioy = —



Non-bidiagonal case

finding the solution for perturbations

Co
2y =0, h(% )=

2 —
SGF = m25T",, oGH = s <__g7'uy> .
v \V=F

Homogeneous solution + particular (inhomogeneous) solution

Z v(g,f) v(g,f)
h?g f) hu T+ hébm)g general solution

hop = —VHE — VVeH homogeneous solution



Non-Bli-diagonal case

solution for perturbations

hMV(f) 0
0 QCl 0 0
h,ul/(g) _ BQU QCl Co (Q — %) 0 0
GR 0 0 cor > 0
0 0 0 co csc?(0)r—s
Qu
rr(g) _ Alrg —rp)e™
) = oG,
hr""(f) —1h"“"“(g)

(m) (m) -

Sinceat r — o0 v =1+ r the perturbations are not regular at infinity.

NO unstable modes
Non-bidiagonal solution is stable against radial perturbations



Bidiagonal case

inearized equsations for perturbations

ngh((lgﬁ) | 77; (hﬁ;) - quh(_)> = 0, pIH = pi — po
2 o ~
gxfnt) - = (hfj) — 9, h<—>) =0 P, = By Rhy
v 2K g Y

1
E hap = -5 (V.Voh =V, V,hi —V,V,h]
+ Ok — 90Ol + 6 Vo Vh®? + 2R Ay,




Bidiagonal case

inearized equsations for perturbations

Endheg - W; (hﬁfy) — g,uuh(_)) = 0, RO = i —
eonlt) =0 BH = pE 4 bt
pr o

1
E hap = -5 (V.Voh =V, V,hi —V,V,h]
+ Ok — 90Ol + 6 Vo Vh®? + 2R Ay,

m' =my/1+1/k
h,Eu_/) is massive

+)
hih) is massless



FPerturbations

massive modes of bi-diagonal solution

VYR, =R =0

_ o\ — _
i) 4+ 2R7 MK = m”h)

\_ J




== [=[=[=]g =] W=t=1-7=

Gregory-Laflamme instability

EFI1-93-02
January 1993

BLACK STRINGS AND p-BRANES ARE UNSTABLE

Ruth Gregory
Enrico Ferma Institute, University of Chicago
5640 S.Ellis Ave, Chicago, IL 60637, U.S.A.
Raymond Laflamme

Theoretical Astrophysics, T-6, MSB288, Los Alamos National Laboratory
Los Alamos, NM 87545,USA

ABSTRACT

We investigate the evolution of small perturbations around black strings
and branes which are low energy solutions of string theory. For simplicity we

focus attention on the zero charge case and show that there are unstable modes

arXiv:hep-th/9301052v2 15 Jan 1993

for a range of time frequency and wavelength in the extra 10 — D dimensions.



== [=[=[=]g =] W=t=1-7=

Gregory-Laflamme instability

EFI1-93-02
January 1993

BLACK STRINGS AND p-BRANES ARE UNSTABLE

Ruth Gregory

Enrico Ferma Institute, University of Chicago

5640 S.Ellis Ave, Chicago, IL 60637, U.S.A.

Raymond Laflamme

) 15 Jan 1993

8g,, = h,,, the Lichnerowicz equation, is essentially a wave equation
C cd
Aph,, = (880 +2R, )h 4=0. (1.1)

Because of the symmetries of the background Sch, X R metric, this reduces to a
four-dimensional Lichnerowicz operator plus a 33 piece. Performing a Fourier
decomposition of 4, in the fifth dimension yields

Aphgy = (44— m*)h,, =0. (1.2)

~— v

focus attention on the zero charge case and show that there are unstable modes

arxi

for a range of time frequency and wavelength in the extra 10 — D dimensions.



Gregory-L_aflamme instability

The solutions to this equations has been studied already.
In the context of Gregory-Laflamme instability.

Five-dimensional black string:

ds? — (1 _ —) a2 4 (1 _ 7“—S)_l dr? 4 1202 + d22

(A (A

Fourier decomposition around the infinite 5th flat dimension
h,(w satisfy the same massive spin two equations with m/'

Modes regular at the future horizon, not growing at infinity



== [=[=[=]g =] W=t=1-7=

G instability

A system of equations of second order plus 2 constraintson H;,, H;., H,,, K

Playing with equations we can obtain a single equation
on g (a combination of Hy, H,, and H;,)

% 4
d?“z 0 T [CUQ - V(T)] Yo = 0 0.010

*

Unstable (€2 > 0) mode, ho
satisfying boundary conditions? |

~0.005 r

Vo = ( — T—g) {QM - m/? - 24M (M — r)m” + 6r°(r — 4M)m"
ro (2M + 13m2)”



Bi-diagonal case: Instability

Instability

Confirmed independently by Brito, Cardoso, Pani arXiv:1304.6725



Instability of black holes

rate of instability

Rate of instability

0.1

0.08"

0.06

’I"SQ

0.04 for m' ~ H %[7' ~ H—a

0.02 Very slow instability !

02 03 04 05 06 07 08 09
ISR

Approximately linear o « 1/m’
dependance

QO =m'



Instability of black holes

rate of instability

What is the fate of such black holes?

5D Gregory-Laflamme instability

Black holes with massive hair (Brito,Cardoso,Pani’13) ?
Only very massive hairy black holes



CONCLUSIONS

4+ [t is possible to construct non-bidiagonal solutions in
massive gravity, which are analogues of corresponding GR
solutions (Schwarzschild, charged, rotating)

4+ The non-bidiagonal black holes in massive gravity are stable
against radial perturbations

4+ The bi-diagonal black holes are unstable

4+ The rate of instability is extremely small

4+ The fate of black holes? The endpoint of gravitational
collapse?

4+ Do perturbations around black holes contain ghosts?



