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Introduction

• Diffusion is the cause for several physical processes

• Heat conduction

• Brownian motion

• At the microscopic level diffusion is due to random collisions between the particles
of the system with those of the background substance

• Stochastic differential equations

• At the macroscopic scale, random effects are averaged, and diffusion is described
by an effective and deterministic theory

• Relativistic kinetic Fokker-Planck equation for distribution function f .

• New cosmological model in which the fluid particles undergo diffusion in a scalar
field, representing the dark energy content of the Universe.

• S. Calogero: A kinetic theory of diffusion in general relativity with cosmological scalar
field. JCAP 11/2011, 016 (2011)

• S. Calogero: Cosmological models with fluid matter undergoing velocity diffusion. J.
Geom. Phys. 62, 2208–2213 (2012)



Introduction Diffusion in GR Robertson-Walker Geometry Exact Solutions Qualitative dynamics Conclusions

Diffusion in General Relativity

• The energy-momentum tensor for a perfect fluid

Tµν = ρuµuν + p(gµν + uµuν)

with linear equation of state

p = (γ − 1) ρ and
2

3
< γ < 2.

• Energy current

Jµ = nuµ

• For matter undergoing velocity diffusion

∇µTµν = σJν

∇µJµ = 0

where σ is the diffusion constant and measures the average energy transferred per
unit time from the background substance to a fluid particle.
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• Einstein equations

Gµν := Rµν −
1

2
gµνR = κTµν

• In presence of diffusion Tµν is not divergence-free. Incompatibility with the twice
contracted Bianchi identities ∇µGµν = 0.

• Add a matter field which interacts with the fluid particles restoring the local
conservation of energy

• The new matter field plays the role of a background medium in which particles undergo
diffusion

• The simplest model for this medium is a vaccum-energy described by a cosmological
scalar field (varying Λ)

Gµν + φgµν = Tµν

• The diffusion equation is
∇µφ = σJµ

• When σ = 0 the model reduces to the Einstein-Euler system with cosmological constant
Λ.

• Our main goal is to give a complete characterization of solutions in the
Robertson-Walker geometry.
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Robertson-Walker spacetimes

• In comoving coordinates (t, r , θ, ϕ) the metric reads

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2dΩ2

]
, dΩ2 = dθ2 + sin2 θdϕ2,

where k = 0,±1 is the curvature parameter.

• The equations for the scale factor a(t), the energy density ρ(t) of the fluid and
the cosmological scalar field φ(t) are

ȧ = Ha,

ρ̇ = −3γHρ− φ̇,

φ̇ = −σn0

(
a0

a(t)

)3

,

Ḣ =
1

3

[
φ−

(
3

2
γ − 1

)
ρ

]
− H2,

H2 =
1

3
(ρ+ φ)− k

a(t)2
,

where a0 > 0, n0 > 0 are the values of the scale factor and the particle density at
the time t = 0.

• The deceleration parameter is defined via q = −1− Ḣ
H2 . A solution is accelerating

iff q < 0.
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Classification of general solutions

• Classification of general solutions based on their asymptotic behavior toward the
past and future time directions.

• A solution is of type A if it becomes singular at some finite time in the past, while in
the future it is singularity free and asymptotically de-Sitter.

• A solution is said to be of type B if it can be matched to a de-Sitter solution at some
finite time in the past, while in the future it is singularity free and asymptotically
de-Sitter.

• Solutions of type C are those which can be matched to a vacuum solution at some
finite time in the past and which become singular at some finite time in the future.

• Finally, a solution of type D is a solution that becomes singular at finite time in both
time directions.

• MAIN RESULT:
Let Ik be the 3-dimensional manifold of the initial data. For all k = 0,±1, there
exists four disjoint three-dimensional submanifolds of initial data Ak ⊂ Ik ,
Bk ⊂ Ik , Ck ⊂ Ik , Dk ⊂ Ik such that if the initial data belong to Ak , the
corresponding solution is of type A, if the initial data belong to Bk , the
corresponding solution is of type B, etc...

• solutions which are not launched by initial data in the set Ak ∪ Bk ∪ Ck ∪ Dk are
atypical, that is to say, they correspond to initial data forming a two-dimensional
submanifold of Ik .
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Diffusion solutions

• When the scale factor a(t) depends linearly on time, we find the explicit solution:

a(t) = a0 + δk t,

φ(t) =
3β

2δk
a(t)−2,

ρ(t) =
3β

δk (3γ − 2)
a(t)−2,

where

β =
σn0a3

0

3

and δk is the real solution of the polynomial equation

δ3 + kδ − 3βγ

2(3γ − 2)
= 0.

• Note that δk > 0, for all k = 0,±1.
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• For k = 0

a(t) = a0 +

(
3βγ

2(3γ − 2)

)1/3

t,

φ(t) =

(√
3γ − 2

γ

3β

2

)2/3

a(t)−2,

ρ(t) =

(
2

γ

)1/3 ( 3β

3γ − 2

)
a(t)−2.

• For σ = 0

• For k = 0 reduces to the Minkowski spacetime

• For k = −1 reduces to the Milne spacetime

• For k = 1 there is no diffusion-free analogue

• All solutions are singularity free and forever expanding in the future, while in the
past they become singular at the time t− = −a0/δk .

• The future expansion takes place at a constant rate, i.e. q = 0.

• The singularity at t = t− is a curvature singularity. The Ricci scalar of the
solution blows up,

R = 4φ+ (4− 3γ)ρ =
9βγ

δk (3γ − 2)
a(t)−2 → +∞, as a(t)→ 0+.
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Vacuum solutions

• Vacuum solutions are solutions with ρ(t) = n(t) = 0 for all times.

• May act as future/past attractors of general solutions of the system of equations.

• Since φ̇ = 0 when ρ = n = 0, vacuum solutions correspond to maximally
symmetric vacuum spacetimes with cosmological constant φ = Λ.

• The scale factor of vacuum solutions satisfies

ä

a
−
(

ȧ

a

)2

=
k

a2
, a(0) = a0, ȧ(0) = H0a0, H0 = ±

√
Λ

3
− k

a2
0

.

The explicit form of the solution depends on the values of the parameters k and Λ.

• Vaccum solutions are either de-Sitter (if Λ > 0 for all k), anti-de-Sitter (if Λ < 0
and k = −1), Minkowski (if Λ = 0, k = 0), or Milne (if Λ = 0, k = −1)
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Vacuum matching solutions

• A remarkable difference with the diffusion-free case is the possibility that the
energy density ρ vanished at some finite time t0 while the scale factor a is still
regular.

• This possibility arises because ρ = 0 is not a solution.

• By a time translation we may set t0 = 0 for any given such type of solution and
therefore we assume that

ρ(0) = 0, a(0) > 0, |H(0)| <∞.

• Since ρ̇(0) > 0, hence ρ(t) < 0 for t < 0.

• To avoid this unphysical region of spacetime, we replace it with suitable vaccum
solutions.

• This extended spacetime is singularity free in the past and in the region t ≤ 0 the
scale factor is given by the vacuum solutions depending on the value of k,
φ(0) = Λ and H0 = H(0).

• The matching at t = 0 is C 2 in the scale factor a(t) and C 0 in the scalar field
φ(t) and in the energy density ρ(t).
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Qualitative dynamics

• We introduce

D =

√
H2 +

1

a2

and a new time variable τ by

d

dτ
(·) =

1

D

d

dt
(·).

In the following we use the notation (·)′ = d
dτ

(·).

• Dimensionless variables

HD =
H

D
, MD =

1

aD
, ΩD =

ρ

3D2
, YD =

φ

3D2
, XD =

φ̇

3D3
.

• These variables satisfy the algebraic constraints

H2
D + M2

D = 1, XD + βM3
D = 0, H2

D = ΩD + YD − kM2
D ,

where we recall that β =
σn0a3

0
3

.
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• The evolution equation for the dimensional variable D is given by

D′ = −HD D(1 + qH2
D ),

• while the remaining variables satisfy

H′D = −qH2
D (1− H2

D ),

M′D = qH3
D MD ,

Ω′D = −XD + 2HD ΩD (1 + qH2
D −

3

2
γ),

Y ′D = XD + 2HD YD (1 + qH2
D ),

X ′D = 3qH3
D XD ,

• where the deceleration parameter

qH2
D = −YD +

(3

2
γ − 1

)
ΩD .

• Note that the equation on D decouples from the rest of the system; this is due to
the fact that D is dimensional, while the other variables have no physical
dimension (in our units).
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• From the constraint equations, we obtain a reduced 2-dimensional dynamical
system.

• We choose to work with the variables (YD ,HD ).

• The reduced dynamical system is then given by

H′D =
[
YD + (1− 3

2
γ)ΩD

]
(1− H2

D ),

Y ′D = −β(1− H2
D )

3
2 + 2HD YD

[
1− YD − (1− 3

2
γ)ΩD

]
,

where
ΩD = H2

D + k(1− H2
D )− YD .

• As opposed to the standard diffusion-free case (β = 0), the variable ΩD is not
bounded and ΩD = 0 is not an invariant boundary.

• In fact
(Ω′D )|ΩD =0

= −XD = β(1− H2
D )3/2 > 0,

and the curve ΩD = 0 acts as “semipermeable membrane”: the flow can cross this
line only in one direction.
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• In particular, the region ΩD > 0 is future invariant and if an orbit in the region
ΩD > 0 intersects the vacuum line ΩD = 0 in the past, then ΩD is negative for all
earlier times along this orbit.

• The solutions of the original system corresponding to these orbits can be matched
to a suitable vacuum solution at the time when the boundary ΩD is crossed.

• By the preceding remarks, we only need to worry about the region ΩD > 0, which
in terms of the variables (YD ,HD ) means

ΩD > 0⇔ YD < H2
D + k(1− H2

D ).

• The state-space X for the reduced dynamical system is then

X = {(YD ,HD ) ∈ R× (−1, 1) : ΩD > 0} .

• Our next goal is to study the qualitative behavior of the flow of the dynamical
system and to present the physical interpretation of this analysis in terms of
solutions of the Einstein equations and their asymptotic behavior.
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Fixed Points

• The dynamical system possesses five fixed points, four of which are located on
the boundary (HD = ±1) and one in the interior.

Fixed point YD HD H(t)

dS− 1 −1 −c

dS+ 1 1 c

F− 0 −1 2γ
3

t−1
−

F+ 0 1 2γ
3

t−1
+

Sk (1− 2
3γ

)(k + (1− k)
δ2

k

1+δ2
k

) δk√
1+δ2

k

c̃t−1

Table: Fixed points of the dynamical system in the state-space X .
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Flat case k = 0

A

B

C

D

HD

YD

F+

F−

dS+

dS−

S(0)

Figure 1: Partition of the state-space for k = 0

1
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Region A for k = 0

A

F+

S(0)

dS+

Figure 1: Region A of the state-space (k = 0)

1

• All orbits in the region A originate from the fixed point F+ and terminate at dS+.

• The solutions have a BIG BANG singularity in the past, while in the future they
are singularity free and asymptotically de-Sitter.

• Since HD > 0 in region A, and all orbits enter the shadowed region before
converging to dS+, the solutions are forever expanding and, after some finite
time, the expansion becomes accelerated.
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Region B for k = 0

S(0)

dS+

de
-S
itt
erB

Figure 1: Region B of the state-space (k = 0)

1

• All orbits in the region B converge in the future to the fixed point dS+, while in
the past they intersect the vacuum line ΩD = 0, where the scale factor can be
continued to the de-Sitter solution for k = 0.

• The corresponding solutions of the Einstein equations are singularity free and
asymptotically de-Sitter both in the past and future time directions.

• Since HD > 0 and the region B is completely shadowed, solutions corresponding
to orbits in this region undergo accelerated expansion for all times.
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Region C for k = 0

F−

S(0)

dS−

C
Minkowski

c1

c2

de
-S
itt
er

de-Sitter

Figure 1: Region B of the state-space (k = 0)

1

• Toward the future, orbits converge to the fixed point F−. The corresponding
solutions possess a BIG CRUNCH singularity toward the future.

• Toward the past, orbits in the region C intersect the vacuum line ΩD = 0.

• There are two special orbits c1, c2 that divide the region into three invariant
regions.
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Region D for k = 0

F+

F−

S(0)

D

1

• All orbits originate from the fixed point F+, and terminate at F−.

• The solutions become singular at finite time in both time directions. BIG BANG
into the past and BIG CRUNCH into the future.

• The solutions are initially expanding, until they reach a stage of maximum
extension, and then they recollapse into the future singularity.
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Open case k = −1

C
D
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YD

F+

F−
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A
B

Figure 1: Partition of the state-space for k = −1

1
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Region A and B for k = −1

A

F+ dS+

S(−1)

1

• The solutions are forever expanding having a BIG BANG singularity into the past
are asymptotically de-Sitter into the future. After some finite time the solutions
are expanding at an accelerated rate.

dS+

de
-S
itt
er

S(−1)

B

1

• The solutions are forever expanding with acceleration and are asymptotically
de-Sitter into the future. At some finite time the solutions can be matched with
expanding de-Sitter with k = −1 for all earlier times.
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Region C for k = −1

F−

S(−1)

dS−

anti-de-Sitter
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r

Milne

c1

c2

c3

c4

C

1

• The matching of the scale factor at ΩD = 0 is either with de-Sitter (YD > 0), or
with Milne (YD = 0), or with anti-de-Sitter (YD < 0).

• There are two special orbits, c3 and c4, intersecting the vacuum line in the
expanding and contracting Milne solution.

• Both these orbits converge to F− in the future and divide the region C into three parts.
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Region D for k = −1

F+

F−

S(−1)
D

1

• All orbits originate from the fixed point F+, and terminate at F−.

• The solutions become singular at finite time in both time directions. BIG BANG
into the past and BIG CRUNCH into the future.
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Closed case k = +1
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Figure 1: Partition of the state-space for k = +1

1
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Regions A and B for k = 1
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• The qualitative behavior of the orbits in regions A and B for this case is similar to
the previous cases k = 0 and k = −1.
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Region C for k = 1

C
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• The matching of the scale factor at ΩD = 0 is with de-Sitter (k = +1).

• There are two special orbits, c5 and c6, intersecting the vacuum line in the
expanding and contracting de-Sitter solutions, respectively.
• Both these orbits converge to F− in the future and divide the region C into three parts.

• The orbits above c5 are initially expanding and then collapsing.

• Between c5 and c6 the solutions are initially contracting → expanding → recollapse.

• The orbits below c6 are forever contracting.
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Region C for k = 1

D

F−

F+

S(+1)

1

• All orbits originate from the fixed point F+, and terminate at F−.

• The solutions become singular at finite time in both time directions. BIG BANG
into the past and BIG CRUNCH into the future.
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Conclusions and further work

• Conclusions:
• In this work we considered a cosmological model based on the Einstein equations with

cosmological scalar field and with fluid matter source.

• The scalar field can be viewed as a background medium in which the fluid particles
undergo diffusion.

• We take spacetime to have a Robertson-Walker line element, so that the model studied
here is spatially homogeneous and isotropic.

• The matter field variables are solutions of a non linear system of ordinary differential
equations.

• We were able to obtain all solutions in which the scale factor is linear on time.

• In order to understand the dynamical properties of general solutions, we rewrite the
system in terms of normalized dynamical variables.

• We have shown that typical solutions of the Einstein equations can be classified
according to their past and future asymptotic behavior into four classes, which we called
A, B, C, D.

• In particular, solutions of type B describe a singularity-free spacetime which is forever
expanding with acceleration and which is asymptotic to de-Sitter spacetime at both
early and late times.

• Future work:
• Use these methods to study more general anisotropic models of Bianchi type

• Among inhomogeneous models, spherical symmetry where the scalar fiel can mimic dark
matter through diffusion
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