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Neutron stars (NS) are very instersting objects.

Neutron stars are extreme objects, under many respects:

mass:  ~1.2 - 2.0 solar masses
radius:  ~10 - 15 km              (n.b.: solar radius ~7 105 km)

magnetic field:   up to ~1016 G

rotation rate:  up to ~1000 Hz

density:   up to ~1015 g/cm3     (n.b.: nuclear density ~ 2 1014 g/cm3)  
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Neutron stars

They can be considered as the “ground state” of matter:
they are the most compact self-graviting stellar objects

in which the gravitational interaction is balanced  by another force 
(mainly Fermi pressure of neutrons). 

Beyond this configuration the star becomes a BH.

gravitational field: => promising GW sources!
GM

Rc2
∼ 0.1− 0.2



Credits: D. Page

Crust : general agreement on its composition (outer: e, ion lattice; inner: e,n,nuclei)

Outer core : general agreement in its composition (n,p,e,μ)

•  Supranuclear densities of matter in inner
    core can not be reproduced in the lab

Inner core: we do not know!  

• Hadron interactions play a crucial role 

Neutron stars

Our lack of knowledge on the
 Equation of State (EoS) of inner core

reflects our ignorance on the non-
perturbative regime of QCD.

We do not even know the particle content:
Hadrons? Hyperons? Meson condensates? 

Deconfined quark matter?

(see e.g. J.M. Lattimer & M. Prakash, Phys. Rept. ’07)
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Figure 3: Neutron star (NS) mass-radius diagram. The plot shows non-
rotating mass versus physical radius for several typical NS equations of state
(EOS)[25]. The horizontal bands show the observational constraint from our
J1614−2230 mass measurement of 1.97±0.04 M!, similar measurements for
two other millsecond pulsars[3, 26], and the range of observed masses for
double NS binaries[2]. Any EOS line that does not intersect the J1614−2230
band is ruled out by this measurement. In particular, most EOS curves in-
volving exotic matter, such as kaon condensates or hyperons, tend to predict
maximum NS masses well below 2.0 M!, and are therefore ruled out.

10

Nuclear physicists have proposed several EoSs describing matter in the NS core,  
with different assumptions (particle content, nuclear many body vs. mean field) 

and different computational techniques. 
In the next years, gravitational wave observations (Advanced LIGO/Virgo, ET)

  and also astrophysical observations (NICER, LOFT)
are expected to constrain the EoS

(Demorest et al.,  Nature ’10)
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Neutron stars
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The physical quantities characterizing a NS

In the case of pulsars, the easiest and most accurate quantity to measure:
we discovered NS by detecting a very regular pulse, associated to their rotation.

1)    Rotation rate 10−2 Hz � ν ≤ 716Hz

Measured with good accuracy in binaries
(pulsar timing, Shapiro delay).

It can be uncertain in isolated NS
(X-ray emission).

NUCLEAR EOS AND NEUTRON STAR MASSES 55

Figure 7: Measured neutron star masses with 1-σ errors. References in parenthe-

sis following source names are identified in Table 1.

J. Lattimer, Ann.Rev.Nucl.Par.Sc. ’12

2)    Mass 1.2M⊙ � M � 2M⊙
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The physical quantities characterizing a NS

3)   Radius

Present estimates of NS radius based on observations of the EM emission.

10Km � R � 15Km

Since the EM signal is affected by complex physics of the NS crust and atmosphere,
the measurements of the NS radius are still model-dependent

and then not fully reliable. 

Actually, a reliable measurement of the NS radius
would be very important, since it would stongly constrain the EoS

(see e.g. J. Lattimer & M. Prakash, Phys. Rept. ’07)

•   GW detection could allow us to measure R:   for instance, by measuring the 
    characteristic frequencies in the GW emission from a NS-NS coalescence
  (R. Oechslin & H.-T. Janka, PRL ’07; N. Stergioulas et al., MNRAS ’11;  A. Bauswein et al., PRL ’12, PRD ’14; 

       K. Hotokezaka et al., PRD ’13;  K. Takami et al., PRL ’14)

Hopes for the next years:

•   future space-based X-ray observer (NICER, LOFT) could be sensitive enough
     to allow a more accurate modeling of the EM signal => reliable measure of R
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4)     Momentum of inertia

The physical quantities characterizing a NS

Presently,  no measure of the NS momentum of inertia, 
only estimates based on our theoretical understanding

1038 kgm2 � I � 3 · 1038 kgm2

J.M. Lattimer & B.F. Schutz, ApJ, ’05:  “We estimate that the moment of inertia of star A in the 
recently discovered double pulsar system PSR J0737-3039 may be determined after a 

few years of observation to something like 10% accuracy.”

Hopes for the next years:

Measure I from the frame dragging effects in double pulsars

This was too optimistic. 
But the next generation of radio telescopes (FAST, SKA)

could allow to measure the frame dragging in double pulsars
- and then the momentum of inertia of NS - in the next few years

(see e.g. M. Kramer & N. Wex, CQG, ’09)
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The physical quantities characterizing a NS

5)      Tidal deformability (Love number) 

1036 g cm2 s2 � λ � 1037 g cm2 s2
Qij = λCij =

2

3
k2R

5Cij

Presently,  no measure of the NS tidal deformability,
only estimates based on our theoretical understanding

5

ness of a black hole (m/R = 0.5) regardless of the EOS
dependent quantity y [16, 17].

Normal matter EOS behave approximately as poly-
tropes for large compactness. However, for smaller com-
pactness, the softer crust becomes a greater fraction of
the star, so the star is more centrally condensed and k2

smaller. For strange quark matter, the EOS is extremely
stiff near the minimum density, and the star behaves ap-
proximately as an n = 0 polytrope for small compact-
ness. As the central density and compactness increase,
the softer part of the EOS has a larger effect, and the
star becomes more centrally condensed.

The parameter that is directly measurable by gravi-
tational wave observations of a binary neutron star in-
spiral is proportional to the tidal deformability λ, which
is shown for each candidate EOS in Fig. 2. The values
of λ for the candidate EOS show a much wider range of
behaviors than for k2 because λ is proportional to k2R5,
and the candidate EOS produce a wide range of radii
(9.4–15.5 km for a 1.4 M⊙ star for normal EOS and 8.9–
10.9 km for the SQM EOS). See Table I.

TABLE I: Properties of a 1.4 M⊙ neutron star for the 18 EOS
discussed in the text.

EOS R(km) m/R k2 λ(1036 g cm2 s2)

SLY 11.74 0.176 0.0763 1.70

AP1 9.36 0.221 0.0512 0.368

AP3 12.09 0.171 0.0858 2.22

FPS 10.85 0.191 0.0663 1.00

MPA1 12.47 0.166 0.0924 2.79

MS1 14.92 0.139 0.110 8.15

MS2 13.71 0.151 0.0883 4.28

PS 15.47 0.134 0.104 9.19

BGN1H1 12.90 0.160 0.0868 3.10

GNH3 14.20 0.146 0.0867 5.01

H1 12.86 0.161 0.0738 2.59

H4 13.76 0.150 0.104 5.13

PCL2 11.76 0.176 0.0577 1.30

ALF1 9.90 0.209 0.0541 0.513

ALF2 13.19 0.157 0.107 4.28

SQM1 8.86 0.233 0.098 0.536

SQM2 10.03 0.206 0.136 1.38

SQM3 10.87 0.190 0.166 2.52

For normal matter, λ becomes large for stars near the
minimum mass configuration at roughly 0.1 M⊙ because
they have a large radius. For masses in the expected
mass range for binary inspirals, there are several differ-
ences between EOS with only npeµ matter and those
with condensates. EOS with condensates have, on aver-
age, a larger λ, primarily because they have, on average,
larger radii. The quark hybrid EOS ALF1 with a small
radius (9.9 km for a 1.4 M⊙ star) and the nuclear matter
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FIG. 2: Tidal deformability λ of a single neutron star as a
function of neutron-star mass for a range of realistic EOS. The
top figure shows EOS that only include npeµ matter; the mid-
dle figure shows EOS that also incorporate π/hyperon/quark
matter; the bottom figure shows strange quark matter EOS.
The dashed lines between the various shaded regions repre-
sent the expected uncertainties in measuring λ for an equal-
mass binary inspiral at a distance of D = 100 Mpc as it passes
through the gravitational wave frequency range 10 Hz–450 Hz.
Observations with Advanced LIGO will be sensitive to λ in
the unshaded region, while the Einstein Telescope will be able
to measure λ in the unshaded and light shaded regions. See
text below.

T. Hinderer et al., PRD ’10

Hopes for the next years:

the GW signal emitted by NS-NS coalescing binaries,
detected by Advanced LIGO/Virgo,

can allow to measure tidal deformability
hPN (x) = A(x)ei[ΨPP (x)+ΨT (x)]

x = (πmf)2/3 m+m1 +m2 ν = m1m2/m
2 M = mν3/5

A(x) =

�
5

24

M5/6

π2/3d
f−7/6

�
1 + β1x+ β2x

2 + . . .
�

ΨPP (x) = 2πftc − φc +
3

128νx5/2

�
1 + α2x+ α3x

3/2 + α4x
2 + . . .

�

ΨT (x) = − 117λ̃

8νm5
x5/2

�
1 + α̃2x+ α̃3x

3/2 + . . .
�

λ̃ =
m1 + 12m2

26m2

6)   Quadrupole moment, higher order tidal moments, etc.
Direct measure does not appear feasible, but enter in models of NS processes
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Universal relations in NS

Very recently,  a powerful tool to study NS and to extract 
information on the EoS from present and future observations, has been found:

some quantities characterizing NSs satisfy universal relations.
In particular, the so-called I-Love-Q relations. 

Preliminary works:
J.M. Lattimer, M. Prakash, ApJ ’01:  
NS radius depends on the pressure at nuclear 
saturation density, regardless from the EoS

– 44 –

Fig. 3.— Empirical relation between pressure, in units of MeV fm−3, and R, in km, for EOSs

listed in Table 1. The upper panel shows results for 1 M" (gravitational mass) stars; the

lower panel is for 1.4 M" stars. The different symbols show values of RP−1/4 evaluated at

three fiducial densities.

M. Urbanec et al., Proc. Int.  Astron. Un. ’13:
Spin induced quadrupole moment,
normalized with rotation, depends on the NS 
compactness C=M/R, regardless from the EoS

8 M. Urbanec, J. C. Miller, Z. Stuchĺık

Figure 3. The Kerr factor q̃ = QM0/J2 plotted against compactness for the selected equations of state. The approximate analytic
relation is labelled as “fit” and is shown using the bold solid line.

q̃ = b(x− 1)2 + 1, x ! x0, (41)

where a1 and a0 are fitted parameters while b and x0 are calculated assuming that the function is continuous and smooth at

the point x0 where the functions are matched. Under these circumstances, the relation for b is

b = a 2
1 /[4.(−a1 − a0 + 1)], (42)

and the matching point x0 is given by

x0 =
2(1− a0)

a1
− 1. (43)

We have found that for a1 = 3.64 and a0 = −5.3, the analytic relation fits the calculated values very well, as shown in Fig. 3.

It can be seen from Fig. 3 that q̃ is systematically decreasing for increasingly compact models and seems to be tending
towards the Kerr value q̃ = 1 as the non-rotating comparison star gets closer to becoming a Schwarzschild black hole, i.e. as

x → 1 or R0 → 2M0. This also corresponds to the stellar models getting closer to the maximum mass limit. The upper limit

for q̃, for the most astrophysically interesting neutron-star models, is about 9. For the strange stars of given compactness, q̃
is always larger than it is for neutron stars of the same compactness, but the tendency towards q̃ = 1 as R0 → 2M0 is seen

for both families of objects. We find that q̃ is almost identical for both values of the bag constant, similar to the situation for

the moment of inertia factor.

A key feature of the results is the systematic decrease of q̃ as the mass increases and approaches its maximal value for

any given equation of state, as shown in Fig. 4. We also note that for compact stars with the canonical mass M = 1.4M!, the
value of q̃ depends strongly on the assumed equation of state (as a result of the varying compactness of the models) and its

value can range between q̃ # 2 and q̃ # 7− 8.

c© 0000 RAS, MNRAS 000, 000–000

In this talk I will only discuss the NS structure,
but similar relations involve its oscillations

(gravitational wave asteroseismology)
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Universal relations in NS

I-Love-Q relations

K. Yagi & N. Yunes, Science ’13; ibid., PRD ’13

I=J/Ω:   momentum of inertia
λ:         tidal deformability
Q:        spin-induced quadrupole moment

Ī = I
M3

λ̄ = λ
M5

Q̄ = Q
MJ2

2

such a source with a second-generation ground based de-
tector, the GW data analysis community may then be
able to measure the averaged NS spin to about 0.01 in
dimensionless units. On a fundamental physics front, the
I-Love-Q relations will allow, for the first time, for tests
of GR with NSs or QSs in the strong-field that are EoS
independent.

Universal Relations. Consider an isolated, slowly-
rotating NS or QS that is described by its mass M∗, the
magnitude of its spin angular momentum J and angu-
lar velocity Ω, its (spin-induced) quadrupole moment Q
and its moment of inertia I ≡ J/Ω. Let us introduce di-
mensionless quantities Ī ≡ I/M3

∗ and Q̄ ≡ −Q/(M3
∗χ

2),
where χ ≡ J/M2

∗ is the dimensionless spin parameter2.
The quantities introduced above have a clear physical
meaning: I determines how fast a body can spin given
a fixed J ; Q encodes the amount of stellar quadrupolar
deformation. These quantities are determined by solv-
ing the perturbed Einstein equations in a slow-rotation
expansion (χ # 1) to first and second order in spin, re-
spectively [13, 17]. Given a realistic EoS, such equations
must be solved numerically.

The slow-rotation approximation requires that χ be
small enough such that all equations can be expanded in
χ # 1. In this approximation, the neglected corrections
to the moment of inertia and quadrupole moment are
of O(χ2) smaller than the leading-order contributions.
Thus, demanding that any subleading terms be less than
10% of the leading-order ones forces the spin to satisfy
χ # 0.3, which corresponds to spin frequencies# 600 Hz
or spin periods $ 1.7 ms. This implies that “true” mil-
lisecond pulsars, ie. those with periods of ∼ 1 ms, cannot
be modeled in a slow-rotation expansion. Double NS bi-
nary pulsars, however, are expected to be spinning much
more slowly, and thus, the slow-rotation approximation
would be adequate for them.

In the presence of a companion, a NS or a QS will also
be quadrupolarly deformed. The quadrupole moment
tensor Qij determines the magnitude of this deformation
and it can be written as Qij = −λ(tid)Eij , where λ(tid) is
the tidal Love number and Eij is the quadrupole (gravito-
electric) tidal tensor that characterizes the source of the
perturbation [8, 18]. Let us introduce the dimensionless
tidal Love number λ̄(tid) = λ(tid)/M5

∗ , which physically
characterizes the tidal deformability of a star in the pres-
ence of the companion’s tidal field. λ̄(tid) can also be cal-
culated by treating the tidal effect of the companion star
as the perturbation to the isolated (non-rotating) NS or
QS solution [13, 18].

We here present universal relations between Ī, Q̄ and
λ̄(tid) for NSs and QSs that are essentially insensitive
to their EoSs [13]. One might have expected these re-

2 All throughout the paper we use geometric units with G (New-
ton’s gravitational constant) and c (the speed of light) set to
unity.

yi xi ai bi ci di ei

Ī λ̄(tid) 1.47 0.0817 0.0149 2.87 × 10−4 −3.64× 10−5

NS Ī Q̄ 1.35 0.697 -0.143 9.94 × 10−2 −1.24× 10−2

Q̄ λ̄(tid) 0.194 0.0936 0.0474 −4.21× 10−3 1.23× 10−4

Ī λ̄(tid) 1.52 0.0100 0.0418 −2.26× 10−3 5.35× 10−5

QS Ī Q̄ 1.30 0.757 -0.139 7.87 × 10−2 −7.29× 10−3

Q̄ λ̄(tid) 0.286 0.126 0.0900 −1.13× 10−2 4.57× 10−4

TABLE I: Estimated numerical coefficients for the fitting for-
mulas of the NS and QS I-Love, I-Q and Love-Q relations.

lations because Ī ∝ C−2, Q̄ ∝ C−1 and λ̄(tid) ∝ C−5

for polytropic EoSs in the Newtonian limit [13], where
C = M∗/R∗ is the compactness parameter, ie. the ratio
of the star’s mass M∗ to its radius R∗. In the slow-
rotation and small-deformation approximations, these
barred quantities depend on spin only quadratically, and
thus, for slowly-rotating stars, the relations are essen-
tially spin-independent.
We consider 6 different realistic EoSs for NSs:

APR [19], SLy [20], Lattimer-Swesty with nuclear incom-
pressibility of 220MeV (LS220) [21], Shen [22], PS [23]
and PCL2 [24], and a simple n = 1 polytropic EoS, with
p = Kρ1+1/n. For the LS220 and Shen EoSs, we adopt a
temperature of 0.1 MeV and assume they are neutrino-
less and in β-equilibrium. For QSs, we consider 3 EoSs:
SQM1, SQM2 and SQM3 [24]. We assume the stars are
uniformly rotating, with isotropic pressure.
The top panels of Fig. 1 present the NS and QS I-

Love and Love-Q relations for various EoSs. Observe
that these relations hold universally for each NS and QS
sequence, essentially independently of their EoSs for each
class. A similar universal relation holds between Ī and
Q̄ [13]. Such relations can be numerically fitted with a
polynomial on a log-log scale [13], shown in Fig. 1 with
solid and dashed black curves, namely:

ln yi = ai + bi lnxi + ci(lnxi)
2 + di(ln xi)

3 + ei(lnxi)
4 ,
(1)

where the coefficients are summarized in Table 1. The
bottom panels of this figure show the fractional errors be-
tween the fitted curves and the numerical results. Equa-
tion (1) is a numerical fit, because the data in Fig. 1 is
itself obtained by numerically solving the Einstein struc-
ture equations, which in turn is unavoidable for realistic
EoSs. For very simple polytropic EoSs, where the equa-
tions of structure can be solved analytically in the New-
tonian limit, one can obtain similar universal relations
that are purely analytic [13].
We have found two possible reasons that may explain

the I-Love-Q relations. First, we find some evidence that
the mathematical relations that define I, λ(tid) and Q
depend mostly on the star’s internal structure near its
outer layer, where our ignorance of nuclear physics is
minimal and realistic EoSs agree. For example, the in-
tegral that defines I in the Newtonian limit accumulates

yi, xi = Ī , λ̄, Q̄

3
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FIG. 1: (Top Left and Right) The neutron star (NS) and quark star (QS) universal I-Love and Love-Q relations for various
EoSs, together with fitting curves (solid and dashed curves). On the top axis, we show the corresponding NS mass with an
APR EoS. The thick vertical lines show the stability boundary for the APS, SLy, LS220 and Shen EoSs from left to right. The
parameter varied along each curve is the NS central density, or equivalently the NS compactness, with the latter increasing to
the left of the plots. (Bottom Left and Right) Fractional errors between the fitting curves and numerical results.

the most near the NS surface [13]. This evidence then
suggests that the I-Love-Q scaling relations should lose
their universality for unrealistic EoSs that modify the
star’s internal structure near its surface. We have veri-
fied this explicitly by computing these relations for NSs
with n = 2, 2.5 and 3 polytropic EoSs: the I-Love-Q
curves deviate away from those in Fig. 1 as n increases.
The NS and QS I-Love-Q relations present different uni-
versal behavior, perhaps in part because their EoSs are
drastically different in the low-density stellar region [25].
The second reason is related to the no-hair theorems of

GR. Figure 1 shows that the NS and the QS I-Love-Q re-
lations approach each other as compactness is increased,
and in turn also approach the expected I-Love-Q rela-
tions for BHs, ie. Ī → 4, λ̄(tid) → 0 and Q̄ → 1 [13]. For
BHs, all multipole moments of the exterior spacetime are
related to the BH mass and spin [26, 27] (e.g. there is
a well-known I-Q relation) because of the no-hair theo-
rems [15, 16]. But for NSs and QSs, such relations were
thought to not hold due to the lack of no-hair theorems
for non-vacuum spacetimes. In spite of this, our results
suggest the existence of NS universal relations between I
and Q that are similar to those that arise for BHs, and
perhaps, hint at the existence of something similar to a
no-hair theorem for non-vacuum spacetimes.
The I-Love-Q scaling found here suggests an effacing

of internal structure, i.e. the expected internal-structure
dependence of the I-Love-Q trio is effectively not there.
This is not a consequence of the well-known effacement
principle [14] in GR, as the latter applies only to the
motion of BHs. The I-Love-Q relations found here re-
late different multipole components of the exterior grav-
itational field of isolated bodies and says nothing about

their relative motion.
Application to Observational Astrophysics. Double NS

binary pulsars have the potential to measure I with 10%
accuracy in the near future [6, 7]. The moment of inertia
may be measurable because it induces additional peri-
astron precession, as well as precession of the angular
momentum vector and the NS spin vectors. The pre-
cession of the former translates into a time-dependent
inclination angle, while the precession of the latter may
force the pulsar beams to sweep in and out of Earth’s line
of sight. Alternatively, this precession may only cause a
change in the observed average pulse shape, as is the case
for the Hulse-Taylor binary pulsar, in which case direct
measurement may be more difficult.
Given an observed Iobs, Mobs and Ωobs, the I-Love-Q

relations automatically provide the value of λ(tid) and Q,
assuming the star is either a NS or a QS. These two quan-
tities would not be easily observable with binary pulsars
directly; although Q and λ(tid) do induce additional pre-
cession, their effect is suppressed relative to that of I,
by various powers of the binary’s orbital velocity to the
speed of light. Of course, the I-Love-Q relations refer to
reduced (barred) quantities, which must be appropriately
normalized by the mass and spin period. The former dif-
fers from the observed mass by quantities of O(χ2), and
a small error in the observed mass could induce a large
error in derived quantities. Such an error is smaller than
the non-universality of the I-Love-Q relations if the NS
spin period is much greater than 8.5ms, which is the case
for the double pulsar binary and a NS binary in the LIGO
band.
Given independent measurements of any two members

of the I-Love-Q trio, one could also in principle distin-

Do not depend on the EoS
do not depend on M
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Universal relations in NS

I-Love-Q relations

•  Observational astrophysics:
    The observation of one of these three quantities would give us the other two.
    The knowledge of all of them allow to reconstruct the spacetime near the NS,
    and, for instance, model its X-ray emission.

•  Gravitational wave astronomy:
   Break the degeneracy between quadrupole moment and rotation rate in the
   gravitational waveform of NS-NS inspiral

Can be useful in many respects

• Fundamental physics:
   Allow for tests of General Relativity with NS, which are EoS-independent.
   A violation of the relations (checked through independent measurements of   
   I, λ, Q) could be a clue of new physics (deviations from GR)
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Universal relations in NS

This idea attracted a lot of interest:

•  K. Yagi & N. Yunes, Science 341, 365 (2013)

•  K. Yagi & N. Yunes, Phys. Rev. D88, 023009 (2013)

•  M. Urbanec, J.C. Miller, Z. Stuchlik, Proc. Int. Astron. Un. 291, 536 (2013)

•  A. Maselli, V. Cardoso, V. Ferrari, L. G., P. Pani,  Phys. Rev. D88, 023007 (2013)

•  A. Maselli, L. G., V. Ferrari  Phys. Rev. D88, 104040 (2013)

•  M. Baubok, E. Berti, D. Psaltis. F. Ozel, Astroph. J. 777, 68 (2013)
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•  G. Pappas, T.A. Apostolatos, Phys. Rev. Lett. 121101, 112 (2014) 

•  D.D. Doneva, S.S. Yazadjiev, N. Stergioulas, K.D. Kokkotas, Astroph. J. Lett. 781, L6 (2014)

•  S. Chakrabarti, T. Delsate, N. Gurlebeck, J. Seinhoff, Phys. Rev. Lett. 112, 201102 (2014)

•  L.C. Stein, K. Yagi, N. Yunes, Astroph. J. 788, 15 (2014)

•  K. Yagi, Phys. Rev. D89, 043011 (2014)
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Universal relations in NS

Extensions of the I-Love-Q relations

  Including the compactness (and then the radius) in the game

Universal relations exist between the NS compactness C=M/R
and the tidal deformability λ with an error ~2%:

4

the possibility for strong-field, model-independent tests
of NS properties. If, for instance, advanced gravitational
wave detectors LIGO/Virgo measure the tidal Love num-
ber in a compact binary coalescence to within (5−10)%,
as estimated in [8, 18], this would allow for an indirect
estimate of the moment of inertia with roughly the same
precision. This measurement would be independent of
(and competitive to) the estimates coming from pulsar-
timing observations [19]. In addition, as shown in YY,
these estimates would allow to set constraints on modi-
fied theories of gravity.

Although in this paper we have presented only NS-
NS binaries, our approach also describes the dynamical
evolution of mixed black hole-NS systems as well. We
have computed the I−λ relation for mixed binaries (with
mass-ratio up to 5), finding similar universal relations
during the entire inspiral.

In this work we have studied the I − λ relation, to
understand the effects of the tidal interaction when the
stars are at short orbital distance. Spin effects have been
neglected. They have been considered by YY in the slow
rotation, low frequency limit. It would be interesting to
establish whether a simple EoS-independent, universal
relation exists, between the tidal Love number and the
spin-induced quadrupole moment Q in the fast rotation,
high frequency regime. This matter will be investigated
in a following work.

We conclude this discussion with some considerations
on the relation between the tidal Love number and the
NS compactness. YY showed that this relation is more
EoS-dependent than the I − λ − Q relations. However,
they included in their study hot and young NSs, which
are unlikely to be members of a coalescing binary system.
If we consider only old and cold NSs, we find that the
C − λ relation acquires a remarkable universality 1. By
computing λ̄ in the low frequency limit, for the EoS APR4,
MS1, H4, and masses in the range [1.2÷2]M⊙, we find that
C is well described by the fit

C = 3.71× 10−1− 3.91× 10−2 ln λ̄+1.056× 10−3(ln λ̄)2 .
(4)

This fit gives the compactness with a relative error � 2%.
The C − λ relation can be extremely useful to ex-

tract information on the NS EoS from a detected grav-
itational wave signal emitted in a binary coalescence.
If the tidal Love number is extracted by Advanced
LIGO/Virgo with an error σlnλ = σλ/λ ∼ 60% [7],
we can determine the compactness with an error σC ∼�
σ2
fit + (∂C/∂ lnλ)2σ2

lnλ � 10%C (where we have as-

sumed σfit � max(C − Cfit)). A much more optimistic
estimate of the error on the measure of the tidal Love
number, σlnλ ∼ 5%[18], would imply a relative error on
the compactness of the order of ∼ 2% (this remarkable
decrease of the relative error, can be traced back to the
∼ R5 dependence of λ̄). Since the same detection would
allow for an accurate estimate of the NS mass, we would
then know the NS radius with an uncertainty of ∼ 10%
or smaller. It should be noted that current estimates of
NS radius based on astrophysical observations (see [21]
and references therein), with a claimed error of ∼ 10%,
are highly debated in the literature since they may de-
pend on the way the NS surface emission is modeled [22].
A measurement of the NS radius, based on gravitational
wave observations and on the C−λ relation, would have
the same, or better, accuracy and it would be model inde-
pendent. Such a measurement would be extremely useful
to put constraints on the NS EoS [23].
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They can allow to translate a measure of λ in a measure of R. 

Is this helpful in extracting information on the EoS? Not really...
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are evaluated for AdvLIGO/Virgo. Different bands correspond to different NS EoS.
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Once we extract λ from the gravitational waveform,  we do not need to find R:
λ is more effective than C to discriminate between different EoS.

(A. Maselli, L.G., V. Ferrari, PRD 88, 104040 ’13)
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Universal relations in NS

Extensions of the I-Love-Q relations

   Extending to the late-inspiral phase

In the late-inspiral stage, the equation Qij=-λCij with constant λ is violated: 

the Love number becomes a Love function λ(r)   (A. Maselli, L.G., F. Pannarale, V. Ferrari, PRD ’12)
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FIG. 1. (Left) The Ī − λ̄ relation is plotted for equal mass NS-NS binaries, three values of the gravitational wave frequency
fGW ≡ 2f = (170, 500, 875) Hz and for the EoS APR4 (×), MS1 (�), H4 (�). Markers refer to numerical data, while dashed
lines are the fits (2). (Right Top) Relative fractional errors between fits and numerical results. (Right Bottom) Ī − λ̄ relation
with moment of inertia normalized by its value at infinity.

On the upper, right panel in Fig. 1 the relative error
(Ī−Īfit)/Īfit is plotted versus λ̄, for the selected frequen-
cies. This error is always � 2%. In the lower panel the
ratio Ī(f)/Ī0 is plotted versus λ̄, where Ī0 is the asymp-
totic value of Ī when the stars are in isolation. This figure
shows that, as the stars approach the merger, their mo-
ments of inertia change with respect to the asymptotic
value, and grow as much as 10%-30%, depending on the
EoS: for stiffer EoS, the variation with respect to the
values at infinity is larger.

Nonetheless, the relative errors (Ī− Īfit)/Īfit are small
and only mildly dependent on the EoS, suggesting that a
simple frequency-independent relation can be found be-
tween Ī and λ̄. We find that

ln Ī = 1.95− 0.373 ln λ̄+ 0.155(ln λ̄)2

− 0.0175(ln λ̄)3 + 0.000775(ln λ̄)4 , (3)

describes very well our numerical results. In the upper
panel of Fig. 2, we compare the fit (3) with our numerical
results, for the full set of binaries and frequencies we have
considered. In the lower panel we plot the relative errors
between the numerical results and the universal fit (3),
showing also how well YY’s fit performs in the dynamical
case. Our fit (Eq. (3)) reproduces the Ī − λ̄ relation to
within 5% at any frequency � 875 Hz and for all EoS and
masses we have considered, while the YY fit becomes less
accurate as the frequency increases, with fractional errors
which become of the order of 10%.

The general fit (3) also holds for unequal mass NS-NS
binaries. For instance, we have checked that for M1 =
1.2M⊙ and M2 = 1.6M⊙, the fit reproduces the Ī − λ̄
relation at any frequency � 875 Hz to within 5% for the
1.2M⊙ star, and 3% for the 1.6M⊙ star.

λ̄

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

10

20

30

 100  1000

Fit

10-4

10-2

10-1

 100  1000
10-4

10-2

10-1

 100  1000
10-4

10-2

10-1

 100  1000

Ī
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FIG. 2. (Top) Fitting curve (3) (dashed line) and numerical
results of the Ī − λ̄ relation, for data-set including points up
to fGW = 875 Hz and the EOS APR4 (×), MS1 (�), H4 (�).
(Bottom) Relative fractional errors between fits and numer-
ical results. Black squares and red circles refer to the fit of
Eq. (3), and to the analytical relation found by YY, respec-
tively.

IV. Discussion. NS-NS binaries are the prototypi-
cal sources for upcoming second-generation gravitational-
wave detectors. Strong-field and finite-size effects are im-
portant to model the waveform during the latest stages
of the inspiral. Our results show that the I − λ rela-
tions discovered by YY in the low frequency regime, can
be extended to describe the dynamical evolution of NSs
during the late stages of the inspiral. These results open

Hovever, the violation of the I-λ relation due to this is mild and can be corrected:

(A. Maselli, V. Cardoso, V. Ferrari, L.G., P. Pani, PRD 88, 023007 ’13)

In addition, it is not clear how to measure I in this stage.
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Universal relations in NS

Extensions of the I-Love-Q relations

  Including the magnetic field

A strong magnetic field B affects the quadrupole moment Q.
The standard I-Q relation considers the rotation induced Q; 

if the contribution of B to Q is not negligible, i.e., 
strong B / small Ω

the universal relation is violated.

At lowest order,

2 Haskell, Ciolfi, Pannarale, and Rezzolla

ing to very large deformations (Ciolfi & Rezzolla 2013). In slowly
rotating stars these magnetic deformations can easily dominate the
quadrupole. Moreover, for twisted-torus configurations the I-Q re-
lation depends on the EOS, further invalidating the universality.

As a result, the “universal” relations found by Yagi & Yunes
(2013a) and extended by Maselli et al. (2013) are not applicable to
highly magnetized, slowly spinning NSs, for which they would lead
to an erroneous determination of the GW parameters. On the other
hand, measured deviations from the universal relations of Yagi &
Yunes (2013a) and Maselli et al. (2013) may potentially be used
to constrain the geometry of the NS internal magnetic field, which
cannot be probed with standard electromagnetic observations.

2 FORMALISM

We calculate the relation between the quadrupolar deformation
of the star, Q, and its moment if inertia, I . We present our re-
sults in terms of the dimensionless quantities Ī ≡ I/M3 and
Q̄ ≡ Q/(M3χ2), where M is the mass of the star, and χ ≡ J/M2,
J being the spin angular momentum of the star (Yagi & Yunes
2013a)1. Note that the quadrupolar deformation is the result of a
rotational part, Qr, and a magnetic part, Qm, i.e., Q = Qm + Qr,
but the normalization of Q assumes that the star is always rotating,
i.e., that χ �= 0. Already for nonrotating models, however, Qm �= 0
in the presence of a magnetic field, and the natural quantity to use
to obtain a normalization would thus be the magnetic energy. For
simplicity, and to easily compare with previous results, we will con-
tinue to define Q̄ as Q/(M3χ2). Note that, for all practical pur-
poses, the slowly rotating models considered here have essentially
the same physical properties as the corresponding nonrotating ones.

In what follows we briefly discuss the general-relativistic
mathematical setups used for the calculation of Q̄ and Ī , either
within a perturbative approximation, or in a fully nonlinear ap-
proach. To understand how a magnetic field can break the univer-
sality of the Ī – Q̄ scaling relations, however, it is instructive to
first consider the much simpler Newtonian case. It is sufficient to
consider the Newtonian results for a rotating polytropic star with
polytropic index n = 1 and polytropic constant κ = 4.25 × 104

cm5 g−1 s−2 (Haskell et al. 2008). At lowest order for a purely
poloidal magnetic field, the scaling relation between the normal-
ized quadrupole and moment of inertia is given by

Q̄ ≈ 4.9 Ī1/2 + 10−3Ī

�
Bp

1012 G

�2 � P
1 s

�2

, (1)

where Bp is the field at the pole, and P the rotation period. The first
term in Eq. (1) is due to rotation (i.e., ∝ Qr), while the second one
is due to the magnetization (i.e., ∝ Qm). This term was not anal-
ysed by Yagi & Yunes (2013a) and Maselli et al. (2013). Similarly,
for a purely toroidal field, the scaling relation is

Q̄ ≈ 4.9 Ī1/2 − 3× 10−5Ī

�
�B�

1012 G

�2 � P
1 s

�2

, (2)

where �B� is now the field averaged over the volume of the star.
Given the expressions in (1) and (2), we can make a number

of remarks that will be valid also when considering the results in a
general-relativistic framework. First, in the case of purely toroidal

1 Different dimensionless normalizations are also possible, e.g., in terms
of I/(MR2) (Lattimer & Prakash 2001; Bejger & Haensel 2002; Urbanec,
Miller & Stuchlı́k 2013).

magnetic fields, the magnetic quadrupolar deformation is negative,
thus corresponding to a prolate shape. Second, with this definition
of Q̄ the results depend on the product B × P and will thus be, in
general, “non-universal”, as this product will vary from system to
system. We will thus investigate the effect of the EOS on the Ī – Q̄
scaling relation at fixed period P , and then study the effect of vary-
ing P . Finally, it is clear from the coefficients in (1) and (2) that
the magnetic corrections are generally smaller than those associ-
ated with the rotation, and that magnetic effects will only dominate
for long rotation periods and strong magnetic fields. Hereafter we
will focus on the Ī – Q̄ relation, since the corrections on the Love
number would be of higher order and no formulation of the Love
number for magnetized and rotating objects has been derived yet.
It is clear, however, that a loss of universality in the Ī – Q̄ relation
implies a loss of universality also in terms of the Love number.

Let us now consider stellar equilibria in full general relativity,
but with magnetic fields that are either purely poloidal or purely
toroidal. Configurations of this type have been extensively stud-
ied in the past (Bocquet et al. 1995; Cardall, Prakash & Lattimer
2001; Kiuchi & Yoshida 2008; Frieben & Rezzolla 2012). Equilib-
rium models even with ultra-strong magnetic fields can be readily
computed via the publicly available LORENE library2, and we re-
fer to Bocquet et al. (1995) (Magstar code) and Frieben & Rez-
zolla (2012) for details on the numerical implementation in the case
of purely poloidal and purely toroidal configurations, respectively.
Although fully nonlinear and simpler to compute, these purely
poloidal or purely toroidal configurations are known to be dynam-
ically unstable on an Alfvén timescale (Markey & Tayler 1973).
Furthermore, the occurrence of this instability has been verified in a
number of recent nonlinear general-relativistic simulations (Lasky
et al. 2011; Ciolfi et al. 2011; Kiuchi, Yoshida & Shibata 2011;
Ciolfi & Rezzolla 2012; Lasky, Zink & Kokkotas 2012).

Let us thus consider a more realistic field topology, the so-
called “twisted-torus”. In these configurations, the magnetic field
has both poloidal and toroidal components, with the toroidal being
possibly much stronger than the poloidal surface field. No general-
relativistic solution has yet been found for this configuration in
a fully nonlinear setup. Nevertheless, twisted-torus configurations
have been explored extensively in recent years, either in Newto-
nian nonlinear equilibria (Tomimura & Eriguchi 2005; Yoshida
& Eriguchi 2006; Lander & Jones 2009), or within general-
relativistic perturbative approaches (Ciolfi et al. 2009; Ciolfi, Fer-
rari & Gualtieri 2010; Ciolfi & Rezzolla 2013). Following the lat-
ter approach, we consider the magnetic field as a perturbation on a
background equilibrium solution of a nonrotating star with an EOS
p = p(e), where p is the pressure and e the energy density. Note
that using nonrotating background models is a good approxima-
tion for rotation periods P � 10 s if the surface magnetic fields
are � 1012 G. More precisely, we find that Q = Qr for fully rel-
ativistic rotating stars with P ∼ 10 s and B = 0 is comparable
to Q = Qm for a twisted-torus configuration with Bp ∼ 1012 G;
these can be taken as the critical periods and magnetic fields such
that Qr ∼ Qm for our twisted-torus configurations.

2
http://www.lorene.obspm.fr
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ing to very large deformations (Ciolfi & Rezzolla 2013). In slowly
rotating stars these magnetic deformations can easily dominate the
quadrupole. Moreover, for twisted-torus configurations the I-Q re-
lation depends on the EOS, further invalidating the universality.

As a result, the “universal” relations found by Yagi & Yunes
(2013a) and extended by Maselli et al. (2013) are not applicable to
highly magnetized, slowly spinning NSs, for which they would lead
to an erroneous determination of the GW parameters. On the other
hand, measured deviations from the universal relations of Yagi &
Yunes (2013a) and Maselli et al. (2013) may potentially be used
to constrain the geometry of the NS internal magnetic field, which
cannot be probed with standard electromagnetic observations.

2 FORMALISM

We calculate the relation between the quadrupolar deformation
of the star, Q, and its moment if inertia, I . We present our re-
sults in terms of the dimensionless quantities Ī ≡ I/M3 and
Q̄ ≡ Q/(M3χ2), where M is the mass of the star, and χ ≡ J/M2,
J being the spin angular momentum of the star (Yagi & Yunes
2013a)1. Note that the quadrupolar deformation is the result of a
rotational part, Qr, and a magnetic part, Qm, i.e., Q = Qm + Qr,
but the normalization of Q assumes that the star is always rotating,
i.e., that χ �= 0. Already for nonrotating models, however, Qm �= 0
in the presence of a magnetic field, and the natural quantity to use
to obtain a normalization would thus be the magnetic energy. For
simplicity, and to easily compare with previous results, we will con-
tinue to define Q̄ as Q/(M3χ2). Note that, for all practical pur-
poses, the slowly rotating models considered here have essentially
the same physical properties as the corresponding nonrotating ones.

In what follows we briefly discuss the general-relativistic
mathematical setups used for the calculation of Q̄ and Ī , either
within a perturbative approximation, or in a fully nonlinear ap-
proach. To understand how a magnetic field can break the univer-
sality of the Ī – Q̄ scaling relations, however, it is instructive to
first consider the much simpler Newtonian case. It is sufficient to
consider the Newtonian results for a rotating polytropic star with
polytropic index n = 1 and polytropic constant κ = 4.25 × 104

cm5 g−1 s−2 (Haskell et al. 2008). At lowest order for a purely
poloidal magnetic field, the scaling relation between the normal-
ized quadrupole and moment of inertia is given by

Q̄ ≈ 4.9 Ī1/2 + 10−3Ī

�
Bp

1012 G

�2 � P
1 s

�2

, (1)

where Bp is the field at the pole, and P the rotation period. The first
term in Eq. (1) is due to rotation (i.e., ∝ Qr), while the second one
is due to the magnetization (i.e., ∝ Qm). This term was not anal-
ysed by Yagi & Yunes (2013a) and Maselli et al. (2013). Similarly,
for a purely toroidal field, the scaling relation is

Q̄ ≈ 4.9 Ī1/2 − 3× 10−5Ī

�
�B�

1012 G

�2 � P
1 s

�2

, (2)

where �B� is now the field averaged over the volume of the star.
Given the expressions in (1) and (2), we can make a number

of remarks that will be valid also when considering the results in a
general-relativistic framework. First, in the case of purely toroidal

1 Different dimensionless normalizations are also possible, e.g., in terms
of I/(MR2) (Lattimer & Prakash 2001; Bejger & Haensel 2002; Urbanec,
Miller & Stuchlı́k 2013).

magnetic fields, the magnetic quadrupolar deformation is negative,
thus corresponding to a prolate shape. Second, with this definition
of Q̄ the results depend on the product B × P and will thus be, in
general, “non-universal”, as this product will vary from system to
system. We will thus investigate the effect of the EOS on the Ī – Q̄
scaling relation at fixed period P , and then study the effect of vary-
ing P . Finally, it is clear from the coefficients in (1) and (2) that
the magnetic corrections are generally smaller than those associ-
ated with the rotation, and that magnetic effects will only dominate
for long rotation periods and strong magnetic fields. Hereafter we
will focus on the Ī – Q̄ relation, since the corrections on the Love
number would be of higher order and no formulation of the Love
number for magnetized and rotating objects has been derived yet.
It is clear, however, that a loss of universality in the Ī – Q̄ relation
implies a loss of universality also in terms of the Love number.

Let us now consider stellar equilibria in full general relativity,
but with magnetic fields that are either purely poloidal or purely
toroidal. Configurations of this type have been extensively stud-
ied in the past (Bocquet et al. 1995; Cardall, Prakash & Lattimer
2001; Kiuchi & Yoshida 2008; Frieben & Rezzolla 2012). Equilib-
rium models even with ultra-strong magnetic fields can be readily
computed via the publicly available LORENE library2, and we re-
fer to Bocquet et al. (1995) (Magstar code) and Frieben & Rez-
zolla (2012) for details on the numerical implementation in the case
of purely poloidal and purely toroidal configurations, respectively.
Although fully nonlinear and simpler to compute, these purely
poloidal or purely toroidal configurations are known to be dynam-
ically unstable on an Alfvén timescale (Markey & Tayler 1973).
Furthermore, the occurrence of this instability has been verified in a
number of recent nonlinear general-relativistic simulations (Lasky
et al. 2011; Ciolfi et al. 2011; Kiuchi, Yoshida & Shibata 2011;
Ciolfi & Rezzolla 2012; Lasky, Zink & Kokkotas 2012).

Let us thus consider a more realistic field topology, the so-
called “twisted-torus”. In these configurations, the magnetic field
has both poloidal and toroidal components, with the toroidal being
possibly much stronger than the poloidal surface field. No general-
relativistic solution has yet been found for this configuration in
a fully nonlinear setup. Nevertheless, twisted-torus configurations
have been explored extensively in recent years, either in Newto-
nian nonlinear equilibria (Tomimura & Eriguchi 2005; Yoshida
& Eriguchi 2006; Lander & Jones 2009), or within general-
relativistic perturbative approaches (Ciolfi et al. 2009; Ciolfi, Fer-
rari & Gualtieri 2010; Ciolfi & Rezzolla 2013). Following the lat-
ter approach, we consider the magnetic field as a perturbation on a
background equilibrium solution of a nonrotating star with an EOS
p = p(e), where p is the pressure and e the energy density. Note
that using nonrotating background models is a good approxima-
tion for rotation periods P � 10 s if the surface magnetic fields
are � 1012 G. More precisely, we find that Q = Qr for fully rel-
ativistic rotating stars with P ∼ 10 s and B = 0 is comparable
to Q = Qm for a twisted-torus configuration with Bp ∼ 1012 G;
these can be taken as the critical periods and magnetic fields such
that Qr ∼ Qm for our twisted-torus configurations.

2
http://www.lorene.obspm.fr
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(poloidal field)
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 B. Haskell, R. Ciolfi, F. Pannarale, L. Rezzolla, Mon. Not. Roy. Astron. Soc. Lett. 438, L71 (2014)

For instance, for P>10s and B>1012 G, for particular field configurations,
universality can be lost.
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Universal relations in NS

Extensions of the I-Love-Q relations

  Including rotation

Preliminary results for rapidly rotating NS
were showing a breakdown of I-Q universality

The Astrophysical Journal Letters, 781:L6 (5pp), 2014 January 20 Doneva et al.

2. FORMALISM

The metric of a stationary and axisymmetric spacetime can
be written in the following form:

ds2 = −e2νdt2 + r2 sin2 θB2e−2ν(dφ − ωdt)2

+ e2(ζ−ν)(dr2 + r2dθ2). (1)

The multipole moments of the spacetime are encoded in the
asymptotic expansion (at large r) of the metric functions ν, B,
ζ , and ω. To leading orders:

ν = −M

r
+

(
B0M

3
+ ν2P2

)
1
r3

+ O
(

1
r4

)
, (2)

B = 1 +
B0

r2
+ O

(
1
r4

)
, (3)

ω = 2J

r3
+ O

(
1
r4

)
, (4)

where M is the gravitational mass, J is the angular momentum,
and P2 is a Legendre polynomial, while ν2 and B0 are expansion
coefficients. The moment of inertia for a uniformly rotating star
is I = J/Ω, where Ω is the angular frequency.

The relativistic quadrupole moment is given by:

Q = −ν2 − 4
3

(
1
4

+ b

)
M3, (5)

where b = B0/M
2. A detailed derivation of the above formula

is given in the book by Friedman & Stergioulas (2013) and
also in the papers by Ryan (1995), Berti & Stergioulas (2004),
and Pappas & Apostolatos (2012a, 2012b). Our numerical
computation was checked against previous results by Berti &
Stergioulas (2004) and Pappas & Apostolatos (2012a, 2012b).

We consider models of uniformly rotating stars, obtained
with the rns code (Stergioulas & Friedman 1995; Nozawa
et al. 1998). Two classes of EOSs are examined: hadronic
EOSs, describing neutron stars; and the MIT bag model of
self-bound strange quark matter, describing strange stars. We
choose six representative neutron star EOSs, which are all in
agreement with the observational constraint of a two solar mass
static model, and two strange star EOSs which also nearly or
easily satisfy the two solar mass constraint, respectively. Our
representative set of hadronic EOSs are: Wiringa et al. (1988,
WFF2); Akmal et al. (1998, APR); Goriely et al. (2010, GCP);
and Hebeler et al. (2010, HLPS), where the Douchin & Haensel
(2001) crust EOS is used. Furthermore, we include EOS L by
Pandharipande et al. (1976), which is one of the stiffest proposed
EOSs, and the zero-temperature limit of the EOS by Shen et al.
(1998a, 1998b). The two strange star EOSs are taken from
Gondek-Rosinska & Limousin (2008) (denoted by SQSB40 and
SQSB60 therein).

3. NEUTRON STARS

In accordance with Yagi & Yunes (2013a, 2013b) and
Haskell et al. (2013) we plot the normalized moment of inertia
Ī = I/M3 as a function of the normalized quadrupole moment
Q̄ = −Q/(M3χ2) where χ = J/M2. Notice that we are using
the gravitational mass M, which is the natural choice for fast
rotating stars. Using the mass M' of a corresponding non-
rotating model, as was done by Yagi & Yunes (2013a, 2013b),

Figure 1. Upper panel: the normalized moment of inertia as a function of
the normalized quadrupole moment. Different colors correspond to different
rotational frequencies, while different symbol shapes are used for the different
EOSs. The EOS independent relation found by Yagi & Yunes (2013a, 2013b)
in the slow rotation limit is shown as a black line. Lower panel: the deviations
from fourth order fits to the data for two representative frequencies f = 160 Hz
and f = 800 Hz.
(A color version of this figure is available in the online journal.)

might also be relevant for some astrophysical applications,
because several empirical relations are available that connect
the properties of fast rotating neutron stars (such as the spin
frequency at the mass-shedding limit or the moment of inertia)
to the masses and radii of a non-rotating star (see Friedman
& Stergioulas 2013). But, we verified that the latter choice
leads to considerably larger deviations from universality for
different EOSs in the rapidly rotating case. Figure 1 summarizes
our results for all hadronic EOSs and for different rotational
frequencies f. Different colors correspond to different fixed
rotational frequencies, while the universal numerical fit (valid
at slow rotation) derived by Yagi & Yunes (2013a, 2013b) is
shown as a solid black line. The deviations of the numerical
results from a fourth order fit is shown in the lower panel for
two representative rotational frequencies—in the slow rotation
limit f = 160 Hz and for f = 800 Hz, which is only somewhat
larger than the spin frequency of the fastest known millisecond
pulsar fmax ≈ 700 Hz (Hessels et al. 2006). The maximum value
for χ is 0.7 for the whole sample of models shown in Figure 1.

Several qualitative conclusions can be drawn based on
Figure 1. Most importantly, the Ī − Q̄ relation changes con-
siderably with increasing rotation rate, even for moderately fast
rotating neutron stars, such as the fastest rotating millisecond
pulsar currently known. The deviation from universality is thus
significant and can reach approximately 40% for the selected
hadronic EOS.5 On the other hand, even though a universal Ī−Q̄
relation does not exist for rapidly rotating neutron stars, we can

5 We define the deviation as the relative difference between Ī for slowly and
rapidly rotating models with a fixed value of Q̄.

2

(D.D. Doneva, S.S. Yazadjiev, N. Stergioulas,K.D. Kokkotas, ApJ 781, L6 ’14)

However, it later became clear that this was due
to the choice of paramterers 

(S. Chakrabarti, T. Delsate, N. Gurlebeck, J.Steinhoff):

and this was universal!

Instead of expressing the momentum of inertia in terms of the 
rotation rate (making a polynomimal fit of                               )        ln Ī = Ī(ln Q̄, f)
they chose to  express it in terms of the angular momentum, 
a=J/M2 (making a polynomial fit of                                       )ln Ī = Ī(ln Q̄, a)

3
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FIG. 1. Dependence of Î and Q̂ on the spin parameter a for

a 1.4M⊙ NS and different EOS, from top to bottom: BSK20,

SLy, APR, FPS, AU.

the higher orders produce a lot of numeric noise for small
a. The data points at a = 0 were obtained in the slow
rotation approximation. We checked that we can use the
default order of the angular expansion for a > 0.1 for our
desired precision goal. This is an important aspect of our
investigation, as we can smoothly connect to the result
in Refs. [5, 6]. This is computationally challenging, since
a large grid size is required to stabilize the result.

In Ref. [11], a deviation from the slow-rotation result
greater than 1% showed up for frequencies between 160
and 480Hz. (However, the deviations become weaker as
one approaches the maximum mass of the NS model.)
The natural next step is to explore if universality can
be extended to this regime and beyond. This requires a
suitable dimensionless parameter characterizing rotation,
say α, such that the relation Î(Q̂,α) is approximately
universal among various EOSs. Indeed, we have defined
several natural candidates for such parameters in Eq. (5):
a, f̂ , and f̃ .

We extend the fit in Ref. [5] by a dependence on a or
f̃ as

log Î ≈
�

i,j

Aija
i logjQ̂ ≈

�

i,j

Bij f̃
i logjQ̂, (6)

where the coefficients are given in Table I. We used
around 30k data points for the regime 0.1 < a < 0.6,
0.2 < f̃ < 1.2, 1.5 < Q̂ < 15. The deviation from these
fits is maximally ∼ 1% (independent of the EOS) and on
average ∼ 0.3%. Figure 2 shows the accuracy of the fit
for the selected EOS. At the time of writing this Letter,
we became aware of Ref. [22], where a similar fit with
a as a parameter was given but the discussion therein
focused on other universal relations.

Note that the polytropes were not included in the data
for the fit but are contained in Fig. 2. It is well known
that one can approximate the EOS of a NS with poly-
tropes in the range n ∼ 0.5 . . . 1; see, e.g., Ref. [18]. Typ-
ically, the tabulated EOSs have an n value closer to 0.5 in
the core, and then it increases up to 1.0. Keeping this in
mind, we found that for n � 0.6 the polytrope is in per-
fect agreement with our fits (Fig. 2), whereas the n = 1
polytrope has greater deviation. This was observed in

TABLE I. Numerical coefficients for the fits of Eqs. (6) and

(7).

i = 0 1 2 3 4

Ai0 1.35 0.3541 -1.871 3.034 -1.860

Ai1 0.697 -1.435 8.385 -14.75 10.05

Ai2 -0.143 1.721 -9.343 18.14 -12.65

Ai3 0.0994 -0.8199 4.429 -8.782 6.100

Ai4 -0.0124 0.1348 -0.7355 1.460 -1.008

Bi0 1.35 0.1570 -0.3244 0.09399 0.02863

Bi1 0.697 -0.6386 1.509 -0.6932 0.05381

Bi2 -0.143 0.7711 -1.636 0.8434 -0.1210

Bi3 0.0994 -0.3594 0.7482 -0.3079 0.06019

Bi4 -0.0124 0.05788 -0.1140 0.05262 -0.03466

Ci0 3.081 -0.1108 0.3402

Ci1 0.6266 -0.01873 0.08047

Ci2 -0.009608 0.01382 -0.02374
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FIG. 2. Percentage deviation of the Î-Q̂-a (top) and Î-Q̂-f̃
(down) fits with respect to data points, averaged over the a
(top) or f̃ (down) direction. The deviation is almost constant

in the a or f̃ direction.

the slow rotation approximation in Ref. [6], too. There-
fore, polytropes can be an ideal toy model to investigate
the underlying mechanism of the universality analytically
(see, e.g., Ref. [37]).
Subsequently, we discuss three choices of the dimen-

sionless parameters and their implications for the uni-
versality of the Î-Q̂ relation.
1) a = J/M2 as dimensionless parameter. This pa-

rameter is the natural choice and works best for the pro-
posed universality. For fixed a, the Î-Q̂ relation depends
on the EOS within less than 1%. However, it depends on
a; see Fig. 3. A simultaneous measurement of Î, Q̂, and
a must be consistent with these curves if general relativ-
ity holds. This can be used to test strong-field gravity
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Universal relations in NS

Extensions of the I-Love-Q relations

  Hot, newly born NS

(G. Martinon, A. Maselli, L. G., V. Ferrari, Phys. Rev. D90, 064026 ‘14)

To study hot, newly born proto-neutron stars
we included finite temperature effects.

Not only a “hot” EoS, but a 
non-barothropic EoS, with profiles of entropy

and lepton number obtained by numerical evolutions

We will now compare the numerical data obtained by
computing the I-λ-Q trio for NSs described by the profiles
GM3NQ (see Sec. IV), with the relations originally found
in [22,23]. We remind the reader that the GM3NQ profiles
describe the evolution of a hot protoneutron star with
baryonic mass Mb ¼ 1.6M⊙ during the first minute of life
after the gravitational collapse.
The fits have the following functional form:

ln y ¼ aþ b ln xþ cðln xÞ2 þ dðln xÞ3 þ eðln xÞ4 ð20Þ

where ða; b; c; d; eÞ are fitting coefficients listed in Table IV.
Equation (20) is defined in terms of the normalized variables
ðĪ; Q̄; λ̄Þ, where Ī ¼ I=M3, λ̄ ¼ λ=M5, and Q̄ ¼ QðM=J2Þ,
M being the neutron star’s gravitational mass and J its
angular momentum. We have computed Ī, λ̄, and Q̄ for the
GM3NQ protoneutron star at different stages of evolution,
i.e., at t ¼ ð0.2; 0.3; 0.5; 1; 2; 5; 20Þ s after birth. The cor-
responding values are shown in Table V.
In order to determine the accuracy within which the

I-Love-Q relations would describe the features of a newly
born neutron star, we have computed the relative errors
ΔI=Īfit ¼ jĪ − Īfitj=Īfit and ΔQ=Q̄fit ¼ jQ̄ − Q̄fitj=Q̄fit,
between our numerical data, and those obtained by using
the fit (20).
The results are summarized in the three panels of Fig. 7,

which clearly show that the I-Love-Q relations lose their
validity in the very early stages after the star’s birth, with
discrepancies between the analytic fit and the numerical

values which can be as high as ∼30% at t ¼ 0.2 s, for the
Ī-Q̄ pair (middle panel in Fig. 7).
However, the relative errors rapidly decrease as time

increases: after 1 s, the relative difference between our
moment of inertia and the fit Ī-λ̄ is 1.6%, that with respect
to the fit Ī-Q̄ is 6.7%, and the relative difference between
our quadrupole moment with respect to the fit Q̄-λ̄ is 4.8%.
After 2 s, these errors reduce to < 1%, 2.2%, and 2.0%,
respectively. It it interesting to analyze these results in
terms of the entropy gradient inside the star at different
times. In each plot of Fig. 5 we have included the plot of the

TABLE IV. Best-fit coefficients of Eq. (20) for the I-Love-Q
relations [22].

y x a b c d e

Ī λ̄ 1.47 0.0817 0.0149 0.000287 −3.64 × 10−5

Ī Q̄ 1.35 0.697 −0.143 0.0994 −1.24 × 10−2

Q̄ λ̄ 0.194 0.0936 0.0474 −0.00421 1.23 × 10−4

TABLE V. Parameters of the NS models with baryonic mass
Mb ¼ 1.6M⊙ built with the GM3NQ EoS. In the first column we
show the time after the star’s birth. In the remaining columns we
list the gravitational mass M, the radius at spherical equilibrium,
the quadrupole moment Q̄, the moment of inertia Ī, and the tidal
deformability λ̄.

t (s) MðM⊙Þ R (km) Q̄ Ī λ̄

0.2 1.58 34.39 18.86 31.32 12999.60
0.3 1.57 28.98 15.23 26.83 7374.64
0.5 1.56 23.79 12.04 22.59 3630.51
1 1.55 19.38 9.40 18.70 1914.93
2 1.53 15.76 7.39 15.58 945.85
5 1.50 13.61 6.20 13.56 564.98
20 1.47 12.91 5.80 12.83 458.91
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FIG. 7 (color online). We show the relative differences
jĪ − Īfitj=Īfit and jQ̄ − Q̄fitj=Q̄fit obtained by testing the universal
relations (20) against the numerical data computed using the
GM3NQ equations of state, at different times (in seconds) after
the birth of the protoneutron star. In the inset we also show, for
some of the considered configurations, the entropy per baryon as
function of the star’s radius.

ROTATING PROTONEUTRON STARS: SPIN EVOLUTION, … PHYSICAL REVIEW D 90, 064026 (2014)

064026-11

The entropy gradient spoils the I-λ-Q universality

But this only occurs in the ~first second after bounce
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Universal relations in NS

Extensions of the I-Love-Q relations

  Alternative theories of gravity

(P. Pani, E. Berti, Phys. Rev. D90, 024025 ’14; D.D. Doneva, S.S. Yazadjiev, K.V. Staykov, K.D. Kokkotas, arXiv:1408.1641)

One of the motivation of the I-Love-Q relations: 
to perform test of GR which do not depend on the (poorly known) EoS.

But how are the relations violated in specific alternative theories of gravity?

Scalar-tensor gravity:

I-Love-Q useless to discriminate GW from scalar-tensor gravity!

Even in the most interesting scenario,
a NS with spontaneous scalarization

(in the narrow window of parameters 
compatible with pulsar observations),

the I-Love-Q relations are satisfied
(even though with reduced accuracy).

9

GR branch and for two scalarized theories. Rotationally
induced mass corrections (shown in the right inset) are
sensibly theory-dependent. The top-right panel shows
the scalar charge (left inset) and rotationally induced cor-
rections to the scalar charge (right inset) as functions of
the stellar mass for scalarized solutions constructed using
different EOS models. Corrections to the scalar charge
can be very large, with δq̃/q̃ ∼ 2 for some values of the
mass. This is consistent with the findings of Doneva et
al. [62], who showed that rotation strengthens the ef-
fects of scalarization: roughly speaking, the total energy
of the star must be large enough in order to scalarize, and
scalarization is favored in spinning stars because of the
rotational contribution to the total energy. The bottom-
left panel shows that scalarization affects the moment
of inertia (left inset) and the quadrupole moment (right
inset). Finally, the bottom-right panel shows that tidal
and rotational Love numbers are nontrivially modified
by scalarization, with very large deviations in the case
of theories that are already ruled out by binary pulsar
experiments.

Although all quantities to second order in the spin dis-
play large modifications for different EOSs and also rel-
ative to GR, the behavior of the dimensionless quanti-
ties (31) turns out to be much more universal. In Fig. 2
we show the Ī(λ̄) (left panels) and Q̄(λ̄) (right panels) re-
lations for scalarized solutions. In the top panels, scalar-
ized solutions refer to a theory with β/(4π) = −4.5 and
Φ∞

0 = 10−3; in the bottom panels the theory parameters
are β/(4π) = −6 and Φ∞

0 = 10−3.

Let us first focus on the most relevant case, that of so-
lutions that are only marginally disfavored by experiment
(top panels). The top insets show six curves, correspond-
ing to scalarized and nonscalarized solutions for three
different EOSs, but these curves are indistinguishable on
the scale of the plot: both in GR and in scalar-tensor
theories, the I-Love-Q relations display very small devia-
tions from universality. In general, the universal I-Love-
Q relation will depend on our assumption on the correct
theory of gravity: we can construct I-Love-Q relations
either by fitting only pure GR solutions (middle inset in
each panel), or by fitting only scalarized solutions (bot-
tom inset). In the middle inset we show deviations from
“pure-GR universality” for stars in GR (continuous lines)
and for scalarized stars (dashed lines with symbols). De-
viations from universal relations are typically of the order
of 2% or less for both Ī(λ̄) and Q̄(λ̄). Furthermore, the
universal relations in experimentally viable scalar-tensor
theories are very close to their GR counterparts.

One could have expected a priori that universal rela-
tions in scalar-tensor gravity would differ from those in
GR, with larger deviations for larger absolute values of
the coupling parameter |β|. The top panels of Fig. 2
show that, even for a theory that is already marginally
ruled out by binary-pulsar measurements, the I-Love-Q
relations agree with those in GR within a few percent
and, in fact, the deviation is comparable with the spread
between different EOS models within GR. In order to
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FIG. 3. Dimensionless rotational Love number λ̄rot
≡ Ī2Q̄ as

a function of the compactness M/R in a scalar-tensor theory

defined by A(Φ) ≡ e
β
2
Φ

2

and V (Φ) ≡ 0, for β/(4π) = −4.5,
Φ∞

0 = 10−3 and for different tabulated EOS models. The
residuals shown in the insets are defined as in Fig. 1, and
they are always smaller than a few percent. All quantities
refer to the Jordan frame, M is in solar-mass units whereas
R is in units of kilometers.

assess the dependence on the coupling parameters, in
the bottom panels of Fig. 2 we show results for a the-
ory with β/(4π) = −6 and Φ∞

0 = 10−3, that is already
excluded by binary pulsar experiments at more than 1σ
confidence level [63]. In this unrealistic case the residual
from the GR universal relation can be as large as ∼ 10%
(cf. middle insets in the bottom panels Fig. 2), whereas
within the scalarized theory the I-Love-Q relations are
still nearly universal, as shown by the small residuals in
the lower insets of the bottom panels.

For both scalar-tensor theories, the bottom insets high-
light a rather interesting point: if we consider scalar-
tensor theory as the correct theory of gravity, the devia-
tions from a universal relation obtained by fitting numer-
ical data within the theory are always very small. This
means that the I-Love-Q relations are nearly universal,
independently of whether GR or scalar-tensor theory is
the correct theory of gravity. In other words, the univer-
sality is intimately tied to universal properties of matter,
and it is quite insensitive to the dynamics of strong-field
gravity.

Finally, the dimensionless rotational Love number (32)
is shown in Fig. 3 as a function of the stellar compactness
M/R for a scalar-tensor theory that is only marginally
ruled out by binary pulsar experiments. As shown in the
middle and lower insets, the residuals from a universal
fit are smaller than ∼ 5%, even for scalarized solutions.
An interesting fact is that, contrarily to the cases shown
in Figs. 1 and 2, the residuals of the scalarized solutions
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Universal relations in NS

Extensions of the I-Love-Q relations

  Shape quadrupole: the eccentricity of rotating NS

(M. Baubok, E. Berti, D. Psaltis. F. Ozel, Astroph. J. 777, 68 (2013))

The NS eccentricity can be expressed (for slow rotation) as a function 
e=e(C,J,Q)

Then, using the universal relation between Q and C, one can express it as
e=e(C,J) 6 Bauböck et al.
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Fig. 5.— Simulated line profiles of an emission line from a
neutron-star surface. The solid line shows a profile calculated using
parameters from a numerical simulation of an AP4 star with a mass
of 1.40 M⊙ and a spin frequency of 700 Hz. The dashed line shows
a star with the same mass, spin frequency, and radius (10.18 km),
but with the quadrupole moment, spin parameter, and eccentricity
determined by our fits. For reference, the dash-dotted line shows a
profile with identical parameters but with the quadrupole moment
set to zero. The photon energy at infinity and in the local Lorentz
frame are denoted by E and E0, respectively.

an empirical description of the oblate shape of spinning
neutron stars that is accurate for multiple equations of
state. They find that compact objects can be divided
into two broad classes with different oblateness at high
spin frequencies. Normal neutron stars and hybrid quark
stars follow one relation, while color-flavor–locked stars
exhibit a different behavior. In both cases, Morsink et al.
(2007) find that the deviation of the stellar surface from
the spherical shape is proportional to the square of the
spin frequency, with some additional correction at fourth
order in the spin.
The empirical model of Morsink et al. (2007) for cal-

culating the shape of normal neutron stars should agree
with the analytic formula we find above when compared
in the same coordinate system. Morsink et al. (2007) de-
fine the shape of the stellar surface in the Schwarzschild
coordinate system. Since the Boyer-Lindquist coordinate
system reduces to the Schwarzschild coordinate system in
the limit of zero spin, we use Equation (22) to calculate
the ellipticity in Hartle-Thorne coordinates and apply
the change of coordinates described in Equation (26).
Figure 4 shows the predicted ratio of the polar to the
equatorial radius in the model of Morsink et al. (2007) as

well as the analytic relation described above for a range
of spin frequencies. In both models a neutron star with
a mass of 1.4 M⊙ and a radius of 10 km was used. The
deviation derived here of the empirical model of Morsink
et al. (2007) and the analytic formula is of order 1% in
the range of observed spins.
The neutron-star shape and quadrupole moment play

an important role in the profiles of lines that originate
on neutron-star surfaces. Bauböck et al. (2013) showed
that, at low inclinations, the quadrupole moment can
cause anomalously narrow features to appear even for
neutron stars spinning at moderate rates. In order to test
whether the fits proposed in this work are precise enough
to accurately model line profiles, we compared the profile
calculated with the parameters predicted by a numerical
simulation to one using the parameters from our fits. We
show the result in Figure 5. For this example, we chose
a model where the fits have large residuals, especially for
the quadrupole moment, which provides the dominant
contribution to the profile shape (Bauböck et al 2013).
Even in this case, the narrow profile is recovered, and the
difference in the resulting profiles is negligible.

6. CONCLUSIONS

We have demonstrated that several macroscopic pa-
rameters of spinning neutron stars can be approximated
with high accuracy using relations that depend only
on their masses, radii, and spin frequencies, but that
are practically independent of the equation of state.
These fits enable measurements of neutron-star masses
and radii using X-ray spectroscopy, timing observations
of pulse profiles, and gravitational-wave observations of
neutron stars spinning at moderate frequencies.
Future detectors such as NICER, LOFT, and Ad-

vanced LIGO will soon allow for more precise measure-
ments of neutron-star parameters than have been possi-
ble to date. Using these observations to constrain the
equation of state of the dense matter found in neutron
star cores requires that the parameter space be reduced
in order to determine the mass and radius with the high-
est precision. The relations demonstrated above allow
this reduction of the parameter space independent of the
equation of state, making possible more precise measure-
ment of the equation of state of neutron-star cores.
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No. PHY-1055103. F.Ö. gratefully acknowledges sup-
port from the Radcliffe Institute for Advanced Study at
Harvard University.

REFERENCES

Andersson, N. & Kokkotas, K. 1998, MNRAS, 299, 1059
Antoniadis, J. et al. 2013, Science, 340, 448
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This can be very helpful,
for instance to model the profiles of emission lines.

When future X-ray missions as NICER and LOFT
will be taking data, a reliable model of the emission 

could allow to finally measure the NS radius!
(D. Psaltis, F. Ozel, D. Chakrabarty, Astrophys. J. 787, 136 ’14)
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Extensions of the I-Love-Q relations

  Higher order moments

G. Pappas, T.A. Apostolatos, Phys. Rev. Lett. 121101, 112 ’14;  L.C. Stein, K. Yagi, N. Yunes, Astroph. J. 788, 15 ’14;
K. Yagi, Phys. Rev. D89, 043011;  K. Yagi, K. Kyutoku, G. Pappas, N. Yunes, T.A. Apostolatos, Phys. Rev. D89, 124013, ’14

Universal relations have been extended to higher order moments,
such as the octupole and hexadecapole multipole moments  Q -> S3, M4 

and the higher-order Love numbers      λ -> λ3

•  l=3 tidal deformability can be important for parameter estimation 
    in 3rd generation GW detector (ET, LIGO III)

•   l=3,4 multipole moments can be important to extract the NS radius 
     from the X-ray signal detected by NICER, LOFT for rapidly rotating NS
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Universal relations in NS

Why do universal relations hold?

(K. Yagi, L.C. Stein, G. Pappas, N. Yunes, T.A. Apostolatos, arXiv:1406.7587)

• I, Q are mainly determined by the structure of the outer region of the NS,
  that is the region we understand better, in which the proposed EoS are similar

• universal relations emerge as the eccentricity of constant density profiles
   is nearly constant:   e(r) ~ const. (self-similarity)
   In cold NS the eccentricity is constant, expecially in the outer region, and this
   reduces the parameter space.  This is an emergent symmetry.

For instance, in hot, young PNS
self-similarity is violated in ~ the 1st s after bounce,
exactly when the I-Love-Q relations do not hold

entropy per baryon as a function of the distance from the
center of the star (normalized to the radius R), for some of
the considered configurations. This shows that the largest
relative errors correspond to the higher entropy gradients
inside the star (blue and red curves), which develop after its
birth and smooth down during the following evolution.
Thus, the time interval during which the I-Love-Q relations
are accurate depends on how fast the star reaches the quiet
state of a neutron star.
It has recently been suggested [55] that the I-Love-Q

relations become less accurate when the ellipticity of the
isodensity contours has a large gradient inside the star.
In Fig. 8 we show the behavior of the ellipticity e of the
isodensity contours [see Eq. (25c) of [56]], normalized to
the star’s rotation rate, for the GM3NQ quasistationary
sequence withMb ¼ 1.6M⊙ considered in this section. We
see that in the first second after bounce, when the I-Love-Q
relations are violated, the ellipticity exhibits significant
variations throughout the star (≳200%). At later times,
when the entropy profiles smooth out and the I-Love-Q
relations are satisfied, the ellipticity profiles are nearly
constant. This supports the suggestion of [55] that the
validity of the I-Love-Q relations is associated with the
self-similar isodensity condition.

VII. CONCLUDING REMARKS

In this paper we have studied how rotation affects the
quasistationary evolution of newly born protoneutron stars.
We have used Hartle’s perturbative approach at third order
in the angular velocity, which we have extended to describe
warm stars, with nonbarotropic equations of state. Hartle’s
equations have been integrated to show how the rotation rate
of a PNSwith fixed baryonicmass changes during the evolu-
tion, taking into account neutrino losses in a heuristic way.

To model the PNS we have used an EoS obtained within
the nuclear many-body theory extended to finite temperature
[39–42], and a sequence of entropy and energy density
profiles which mimics the stellar interior of a PNS. This
is supposed to evolve from a few tenths of a second after
bounce [temperature ∼30–40 MeV (∼5 × 1011 K), radius
∼30km, strongentropygradients], to the followingminute(s)
during which gradients are smoothed out, temperature
decreases to a few MeV, and radius decreases to 10–15 km.
The EoS and profiles we have used are constructed,

having as a reference the quasistationary evolution profiles
obtained in [9], by solving Boltzman’s equation and
using an EoS obtained within a finite-temperature, field-
theoretical model solved at the mean field level. To our
knowledge, the stellar models given in [9] are the only
example of the quasistationary evolution of a nonrotating
PNS available in the literature (we also mention the
numerical simulations of [57,58], which employ equations
of state very similar to those used in [9], and find similar
results). Unfortunately we could not use these models to
study how they change with rotation, because they are
given for fixed values of the central energy density, whereas
to generate a rotating star with fixed baryonic mass, we
need to change it. However, we believe that the results we
obtain in this paper with the BS sequence give interesting
indications on the quasistationary evolution of a rotating,
hot PNS, provided no instability is present (see discussion
in Sec. I), and show a methodology which could be used
with other stellar models of evolving PNS, when available.
Our main results are the following:
(i) As a PNS cools down, the maximum mass allowed

by the EoS and by the chosen entropy profiles
increases, and the maximum rotation rate (mass-
shedding limit) increases as well.

(ii) A cold neutron star cannot have the maximum mass
allowed by the final zero temperature EoS, unless
the evolutionary path of the hot PNS from which it
has evolved is allowed to do so. It is commonly
believed that an equation of state is able to describe a
NS interior if the maximum mass it predicts is larger
than the maximum mass observed in neutron stars.
However, our results show that this should be
considered as a necessary, but not sufficient con-
dition. This means that a full understanding of
NS structure cannot overlook the history of these
objects.

(iii) An isolated neutron star, even when born rotating
near the mass-shedding limit, cannot have a rotation
rate close to the mass-shedding limit associated to
the cold EoS which characterizes its interior (see
Table III and Fig. 6).

(iv) If an isolated NS is found to be rapidly rotating,
Table III indicates that its mass must be high.

(v) I-Love-Q relations are no longer valid for very hot
neutron stars, but become valid all the same a few
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FIG. 8 (color online). The ellipticity of the isodensity
contours, normalized to the rotation rate, is plotted as a
function of the radial distance at different times of the
PNS evolution. This plot refers to the GM3NQ quasistationary
sequence with Mb ¼ 1.6M⊙.
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(G. Martinon, A. Maselli, L. G., V. Ferrari, Phys. Rev. D90, 064026 ‘14)
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Conclusions

  Universal relations seem to be an emergent simmetry appearing in cold, old NS

 They relate various quantities characterizing the NS: 
   momentum of inertia, Love number, rotation-induced quadrupole moment (I-λ-Q)
   but also compactness, higher order Love number, higher multipole moments,
   eccentricity, etc., irrespectively from the EoS (and from the mass)

 Can be useful to break degeneracies in observations both in GW and X-ray,
    eventually extracting information on the NS EoS from such observations

 Can also be useful to discriminate GR from alternative theories 
    (but scalar-tensor theories behave as GR in this respect)

  The original formulation can be extended to include rotating star, with
     and appropriate choice of the parameter describing rotations,
     and to describe the last stages of the collapse

 Universality can be spoiled by strong magnetic fields and by thermal effects


