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VWhy modify gravity™?

Why modify gravity?

- cosmological constant problems,

- hon-renormalizability problem,

- benchmarks for testing General Relativity
- theoretical curiosity.

Many ways to modify gravity:

- f(R), scalar-tensor theories,

- Galileons, Horndeski (and beyond) theory, KGB, Fab-four,
nigher-dimensions,

DGP,
Horava, Khronometric
- massive gravity

- Naively, cancellation of the cosmological constant,
because of the Yukawa decay;
- Small cosmological constant due to small graviton mass
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Old problems of massive gravity

1.
PhyS|Ca | gh OSt [ Boulware&Deser’'72]

2.
Extra propagating degrees of freedom.
Difficult to pass basic Solar system gravity tests.
VDVZ dISCOntIHUIty [van Dam&Veltman’70, Zakharov’'70]
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Fierz-Pauli massive gravity

Expand the Einstein-Hilbert action:

Juv — Nuv + h/u/

1
Sar = M3 / d*z\/—gR = / d*x (—§h“’/5§fha5> + O(h?)

| 1 1 1 ]
gﬁél/ﬁh(xﬁ — —§au(9yh — 5 hl“/ -+ 58/08“}15 — §apayhﬁ _ inﬂl/(apaahpa .

2 propagating spin: 2 massless gravitons, spin-2

% = %+ €%, hp = —Euw — &y
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Fierz-Pauli massive gravity

Fierz-Pauli action (Fierz&Pauli’39):

1 1
Spe = 113 [ ' hwgﬁmﬁ — L (b hQ)}

Linearized Einstein- mass term
Hilbert term

v — _gu;v — fvm

5 healthy degrees of freedom (because of a particular choice of the potential, h=0)
for a generic mass term 6 d.o.f., one is nhecessary Ostrogradski ghost

Non-linear completion ?

Lishon, STRONG GRAVITY, June 10



Non-linear massive gravity

Introduce an extra metric to construct mass term
(contract indices)

g, :physical metric, matter couples to it

fuv :an extra metric (may be dynamical or fixed)

Construct a potential, which is
invariant under diffeomorphism (common for two metrics)
+ some technical conditions
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Non-linear massive gravity

potential for meftric

building block: g~ *f

1
Sz(f,,% = —ngMl%/d4x vV —f HuwHyr (fF°F7 — fRYf°7)  (Boulware & Deser72)

1

3 o _UT vV OT
Sz(n% = —§m2M123/d4$ V=9 HuwHer (g"79"" — 9" g77) (Arkani-Hamed et al'03)

where H,, = g, — fu
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\Vainshtein mechanism

screens exira degree of freedom

Non-linear effects restore General Relativity
close to the source
due to the non-linear effects

[Vainshtein’72]
[EB, Deffayet, Ziour‘’09'10]
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Non-linear massive gravity

Boulvware-Deser ghost

Generically there are two propagating

scalars: one is a ghost !

(Boulware & Deser72)
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dRGCT massive gravity

special case of non-linear massive gravity

Massive gravity without Boulware-Deser ghost
[de Rham, Gabadadze, Tolley‘’10’1l1l, Hassan & Rosen’l1l2]

g is physical metric;
Y
Y =+g 't f is fixed (flat) or extra dynamical metric.

S:M%)/d4$\/—g

([X]° = [X7]), es = = ([X]° = 3[X][X7] + 2[X7])

1
6
([X]* = 6[XT*[X7] + 3[X )" + 8[X][X "] — 6[X])
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Equsations of motion

—a T*
2 (\/ g

ST i)

G, 1s the Einstein tensor for metric g,

G, 1s the Einstein tensor for metric f,,

IN vacuum
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BLACK HOLES
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Black holes

Schvvarzschild metric

Salam & Strathdee’ 7 7]
Non-bidiagonal BHs Isham & Storey’ 78]
[Koyama, Niz, Tasinato’11]

Ansatz (bi-Eddington-Finkelstein form) [EB & Fabbri’13]:

ds’® = "g

9

ds?c Tf) dv? + 2dvdr + rdeZ_
r i

) dv* + 2dvdr + r*dQ?,

| Py = g bi-diagonal
Two choices: {5(0 _ 1)2 —2a(C—-1)+1=0 non-bidiagonal

For these choices the extra “mass” energy-momentum tensor
reduces to effective cosmological constant
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Charged Bllack holes

Electromagnetic field coupled to g

lz

3 ) dv?® + 2dvdr + r*d?,
g

) dv? + 2dvdr + r2dQ)?

[EB & Fabbri’1l4]
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Black holes

Rotating solutions

Original Kerr metric

dsg = — (1 7:5;) (dv + asin? 9dgb)2
+ 2 (dv + asin? Hdgb) (dfr + asin? 9d¢) + p° (d92 + sin” 9d¢2)

0> = 1%+ a*cos’d

fis flat, but unusual form

ds?c —=C"? [—dv2 + 2dvdr + 2a sin® Odrde + p*df* + (7“2 + a2) sin” 9d¢2]

( - 2 2 2 2 2
Obtained from dsy; = —dt® + dz* + dy” + dz

by:
t=v—r, x+iy=(r—ia)e’siné, z = rcosf

r—Cr, v—Cv, a— Ca
- Lisbon, STRONG GRAVITY, June 10




Hairy black holes

Asymptotically AdS hairy solutions exist [volkov, '12]

gudrtde’ = — Q*dt* + N2 dr® + R*d)?,
Juwdzldr” = — a” dt* + b* dr? + U*dQ)?

Numerical integration of a system of coupled ODEs

1.01 F

N' =Fi(r,N,Y,U, i, k, a3, ag) T
Y'=F0r,N,Y,U, u, k,as, ay) |
U = F3(r,N,Y,U, u, k, az, ay).




Hairy black holes

Asymptotically flat hairy solutions [Brito, cardoso, Pani’13]

No solutions for u<u,_

_——— O(3='O(4

Yukawa decay

g
For generic potential
only for large BH mass.

re~1/H

\_




PERTURBATIONS
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FPerturbations

spherically symmetric ansatz for perturbations

Perturbations of both metrics

G = Gy + Wi, fuw = £ + hil)

2 —
SGH = m26T",, 6GH = 1§ (—ng) .

g K

v—r
h”U’U (,r.) h”U’)"

i) om0
Mg (1) Tigy(r) - 0 0
0 0 h(g) () 0

2
00
0 0 h(g) (T)
r2 sin? 0

W) = gy = Cohiyy e () = hig(r) = h{p (1)
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FPerturbations

spherically symmetric ansatz for perturbations

Perturbations of both metrics

G = Gy + Wi, fuw = £ + hil)

2 —
SGH = m26T",, 6GH = 1§ (—ng) .

g K

v—r
h?)’U (,r,) h’U’l"

o) om0
M () higpr) 0 0
0 h(J;)Q(T) 0

h99 (1)

0 r2(£i)n29

W) = gy = Cohiyy e () = hig(r) = h{p (1)
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Spherical Perturbations

Regularity at horizons and infinity !
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Non-bidiagonal case

General solution for perturbations

hl(wf) _ hul/(g 1)y prv(g:f)
g

/

(m)

— VIV — YV EH
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Non-Bli-diagonal case

explicit solution for perturbations

o(f
hew =

h/ﬂ/(g) o2

rr(g)  Alrg —rp)e
) = o),

()
Ny~ = (m) -

—1h’rr(g)

Sinceat 1 —+ o0 v =1+ r the perturbations are not regular at infinity.

NO unstable modes
Non-bidiagonal solution is stable against radial perturbations

[EB & Fabbri’l4]



Ferturbations for bidiagonal case

0B, (+) _
g8

- J

( VYR =K =0
hG) 4+ 2R A RS = m”h()

~N

IS massive

af hih)is massless
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== [=[==]g =] W=t=1-7=

Gregory-LLaflamme instability

EFI1-93-02
January 1993

BLACK STRINGS AND p-BRANES ARE UNSTABLE

Ruth Gregory

Enrico Fermi Institute, University of Chicago

5640 S.Ellis Ave, Chicago, IL 606537, U.S.A.

Raymond Laflamme
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8g,, = h,,, the Lichnerowicz equation, is essentially a wave equation
C cd
Aphg, = (8840 +2R, Yh 4=0. (1.1)

Because of the symmetries of the background Sch, X R metric, this reduces to a
four-dimensional Lichnerowicz operator plus a 6‘3 piece. Performing a Fourier
decomposition of %, in the fifth dimension yields

Aphgy = (44— m?)h,, =0. (1.2)

R————-—

focus attention on the zero charge case and show that there are unstable modes

for a range of time frequency and wavelength in the extra 10 — D dimensions.




== [=[==]g =] W=t=1-7=
G L instability

A system of equations of second order plus 2 constraintson H;,, H;., H,,, K

Playing with equations we can obtain a single equation
on g (a combination of Hy, H,, and H;,)

d2 V
72 70 + [w* = V(r)] o =0 [

*

Unstable (€2 > 0) mode,
satisfying boundary conditions?”

—-0.005

o 24M(M — rYm/* + 6r3(r — 4M)m/?

(2M + T3m’2)2




Bi-diagonal case: Instability

Instability

Confirmed independently by [Brito, Cardoso, Pani’13]
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Instability of black holes

rate of instability

Rate of instability

0.1

for m’ ~ H%[T ~ H_a

Very slow instability !

02 03 04 05 06 07 08 09
ISR

Approximately linear o « 1/m’
dependance

QO =m'
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Instability of black holes

extended result

Proportional metrics fuw = w’gu
By appropriate choice of the parameters of the mass term the
extended bi-Schwarzschild solution exists.

The mass of perturbations is modified by a factor depending

on G, g, W
The result is the same: there is instability in the range 0 < m <

| [EB & Fabbri’13]

-

T T T T I T T
L 2_

~ Monopole AgM™=0
- Instability T~ -== AgM?=0.003"

de Sitter: instability is still there i N o= AMP=0.03
[Brito, Cardoso, Pani’13] * R :




Superradiant instability

The Kerr solution in massive gravity is prone to another kind of
instability, related to the superradiant scattering of bosonic
fields with spinning BHs.

“Natural” instability: linear massive spin-2 perturbations.
Similar to instability, which occur for massive scalar and
vector perturbations of rotating BHs in GR.

Constraints on graviton mass mg f, 5 X 1()_23e\/

[Brito, Cardoso, Pani’13]
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CONCLUSIONS

It is possible to construct non-bidiagonal solutions in massive gravity, which
are analogues of corresponding GR solutions (Schwarzschild, charged,
rotating).

There are hairy massive gravity black holes

The non-bidiagonal black holes in massive gravity are stable against radial
perturbations.

+

The bi-diagonal spherically symmetric BHs are unstable due to the helicity-O
mode instability. The rate of instability is extremely small.

Superradiant instability for rotating BHs in massive gravity.

The fate of unstable BHs? The endpoint of gravitational collapse?
Rotating hairy BHsS?

dS hairy black holes?

Do perturbations around black holes contain ghosts?

+ 4+ 4+

Non-bidiagonal solutions: superradiant instability?
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