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The first successful, high-precision redshift measurement was the series of Pound–Rebka–Snider
experiments of 1960 – 1965 that measured the frequency shift of gamma-ray photons from 57Fe as
they ascended or descended the Je↵erson Physical Laboratory tower at Harvard University. The
high accuracy achieved – one percent – was obtained by making use of the Mössbauer e↵ect to
produce a narrow resonance line whose shift could be accurately determined. Other experiments
since 1960 measured the shift of spectral lines in the Sun’s gravitational field and the change in
rate of atomic clocks transported aloft on aircraft, rockets and satellites. Figure 3 summarizes the
important redshift experiments that have been performed since 1960 (TEGP 2.4 (c) [281]).
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Figure 3: Selected tests of local position invariance via gravitational redshift experiments, showing
bounds on ↵, which measures degree of deviation of redshift from the formula �⌫/⌫ = �U/c2. In
null redshift experiments, the bound is on the di↵erence in ↵ between di↵erent kinds of clocks.

After almost 50 years of inconclusive or contradictory measurements, the gravitational redshift
of solar spectral lines was finally measured reliably. During the early years of GR, the failure
to measure this e↵ect in solar lines was siezed upon by some as reason to doubt the theory.
Unfortunately, the measurement is not simple. Solar spectral lines are subject to the “limb e↵ect”,
a variation of spectral line wavelengths between the center of the solar disk and its edge or “limb”;
this e↵ect is actually a Doppler shift caused by complex convective and turbulent motions in the
photosphere and lower chromosphere, and is expected to be minimized by observing at the solar
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Figure 5: Measurements of the coe�cient (1 + �)/2 from light deflection and time delay measure-
ments. Its GR value is unity. The arrows at the top denote anomalously large values from early
eclipse expeditions. The Shapiro time-delay measurements using the Cassini spacecraft yielded an
agreement with GR to 10�3 percent, and VLBI light deflection measurements have reached 0.02
percent. Hipparcos denotes the optical astrometry satellite, which reached 0.1 percent.
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Figure 2: Selected tests of local Lorentz invariance showing the bounds on the parameter �, which
measures the degree of violation of Lorentz invariance in electromagnetism. The Michelson–Morley,
Joos, Brillet–Hall and cavity experiments test the isotropy of the round-trip speed of light. The
centrifuge, two-photon absorption (TPA) and JPL experiments test the isotropy of light speed
using one-way propagation. The most precise experiments test isotropy of atomic energy levels.
The limits assume a speed of Earth of 370 km s�1 relative to the mean rest frame of the universe.
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the wire and g were not quite parallel because of the centripetal acceleration on the apparatus due
to the Earth’s rotation; the apparatus was rotated about the direction of the wire. In the Dicke
and Braginsky experiments, g was that of the Sun, and the rotation of the Earth provided the
modulation of the torque at a period of 24 hr (TEGP 2.4 (a) [281]). Beginning in the late 1980s,
numerous experiments were carried out primarily to search for a “fifth force” (see Section 2.3.1),
but their null results also constituted tests of WEP. In the “free-fall Galileo experiment” performed
at the University of Colorado, the relative free-fall acceleration of two bodies made of uranium and
copper was measured using a laser interferometric technique. The “Eöt-Wash” experiments car-
ried out at the University of Washington used a sophisticated torsion balance tray to compare the
accelerations of various materials toward local topography on Earth, movable laboratory masses,
the Sun and the galaxy [249, 19], and have reached levels of 3 ⇥ 10�13 [2]. The resulting upper
limits on ⌘ are summarized in Figure 1 (TEGP 14.1 [281]; for a bibliography of experiments up to
1991, see [107]).
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Figure 1: Selected tests of the weak equivalence principle, showing bounds on ⌘, which measures
fractional di↵erence in acceleration of di↵erent materials or bodies. The free-fall and Eöt-Wash
experiments were originally performed to search for a fifth force (green region, representing many
experiments). The blue band shows evolving bounds on ⌘ for gravitating bodies from lunar laser
ranging (LLR).
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Weak	  Equivalence	  Principle+	  
Local	  Lorentz	  Invariance+	  
Local	  Posi8on	  Invariance=	  
Einstein’s	  Equivalence	  Principle	  
	  

Implies	  gravity	  is	  a	  metric	  theory:	  
gravity	  is	  space+me	  curvature	  
	  

Best	  test	  of	  space8me	  curvature:	  	  
Cassini	  bound	  



Why	  should	  we	  bother	  looking	  for	  modifica+ons	  of	  GR?	  
(Circa	  1919)	  
Journalist:	  “Herr	  Einstein,	  what	  if	  the	  theory	  turned	  out	  to	  be	  wrong?”	  
Einstein:	  “I	  would	  feel	  sorry	  for	  the	  dear	  Lord.	  The	  theory	  is	  correct.”	  
	  
(Circa	  1970)	  
Chandrasekhar	  to	  his	  postdoc	  Clifford	  Will:	  
“Why	  do	  you	  spend	  so	  much	  Bme	  tesBng	  GR?	  We	  know	  the	  theory	  is	  right.”	  

1)  Theory:	  GR	  is	  not	  renormalizable	  
It	  becomes	  renormalizable	  if	  one	  adds	  	  
high-‐order	  curvature	  terms	  to	  the	  ac+on	  

2)  Experiments:	  dark	  maRer,	  dark	  energy	  
Due	  to	  modified	  gravity?	  

	  Problem:	  GR	  is	  extremely	  well	  tested	  	  
	  “in	  between”	  these	  two	  regimes	  

	  
	  “Short	  blanket	  problem”	  	  
	  for	  modifica+ons	  of	  GR	  
	  	  



Tests of  
strong gravity

Berti+ 1501.07274 



What	  is	  “strong”	  gravity?	  
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Fig. 1.— A parameter space for gravitational fields, showing the regimes probed by a wide range of astrophysical and cosmological
systems. The axes variables are explained in §2 and individual curves are detailed in §3. Some of the label abbreviations are: SS = planets
of the Solar System, MS = Main Sequence stars, WD = white dwarfs, PSRs = binary pulsars, NS = individual neutron stars, BH = stellar
mass black holes, MW = the Milky Way, SMBH = supermassive black holes, BBN = Big Bang Nucleosynthesis.
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is constant throughout the sphere. This is the reason
why the galaxy cluster profiles and some of the individual
galaxy profiles in Fig. 1 are approximately vertical (see
also §3.3) – they represent nearly-virialized systems.

3.2. Stellar-Scale Objects

We now place individual objects on the parameter
space, beginning with some simple test-particle-in-orbit-
type systems. When evaluating the potential and curva-
ture probed in these settings, we use the semi-major axis
of the orbit, neglecting any eccentricities as well as grav-
itational interactions between multiple orbiting objects.
We also only need to consider the potential well of

the dominant mass in the system under consideration.
For example, we do not account for the potential well
of the Galaxy when considering the potentials probed by
planets orbiting the Sun. This is because only di↵erences
in potentials are measurable, and the potential profile of

“Curvature	  desert”	  

Gravita+onal	  field	  
	  
	  
	  

Curvature	  (Kretschmann	  scalar)	  
	  
	  
	  
	  

Strongest	  test	  of	  GR:	  	  
PSR	  J0348+0432,	  P=2.46hr,	  	  

v/c=2x10-‐3	  	  
[Antoniadis+,	  1304.6875]	  

	  

Strong-‐field	  probes:	  black	  holes	  and	  neutron	  stars	  

2 Baker et al.

The purpose of this paper is to introduce a well-
defined, quantitative procedure for comparing the envi-
ronments probed by di↵erent tests of gravity (see Psaltis
2008 for earlier ideas along these lines). Placing all sys-
tems on a common set of axes should facilitate discus-
sion between di↵erent sectors of the gravitational physics
community. Furthermore, making plain the remit of ex-
isting constraints will allow us to sensibly ask the ques-
tion: is there still ‘room’ for departures from GR in the
present state of a↵airs? Are there untested gravitational
environments that might provide the most fruitful direc-
tions for future research?
In §2 we explain our choice of axes for a gravitational

parameter space, and how both astrophysical and cosmo-
logical systems can be mapped onto them. §3 is devoted
to the understanding of this powerful but subtle plot. In
§4 we provide a visualization of experimental constraints,
which indicates where the under-tested regimes of grav-
ity lie. §5 is devoted to a discussion of our results.
In this paper we will work in conformal time ⌘,

denoting derivatives with respect to ⌘ by a dot. The
conformal Hubble factor is H ⌘ ȧ/a. Fractional energy
densities such as ⌦M (⌘) denote time-dependent quanti-
ties; present-day values are indicated by a subscript zero,
e.g. ⌦M0

. The metric signature used is {�,+,+,+}.
Some extended calculations are sequestered in the
Appendix.

2. QUANTIFYING GRAVITATIONAL FIELDS

2.1. Categories of Systems

The gravitational systems considered in this paper fall
into three categories: laboratory, astrophysical and cos-
mological. Most of our discussion will focus on the latter
two categories.
The astrophysical systems are nearly all spherically

symmetric, and many can be approximated by a test
particle in orbit around a central mass, e.g. a planet
orbiting a star, a star orbiting close to a supermassive
black hole, etc. Observations of the test particle’s mo-
tion are considered as a probe of the gravitational field
of the larger body.
Cosmological systems, e.g. the CMB, must instead be

treated as power spectra. These require more careful
handling; a gravitational field must be assigned to each
wavenumber k or angular mode ` in the power spectrum.
We need to define quantifiers analogous to those applied
to astrophysical systems, so that comparisons between
the two categories are possible.
Below we set out the system we will use to assess grav-

itational field strengths for the astrophysical and cosmo-
logical categories. In §4.5 we will explain how equivalent
parameters are assigned to two specific laboratory tests
of gravity.

2.2. Gravitational Quantifiers

In GR, three tensors make up the description of space-
time that enters the Einstein equations: the metric, the
Riemann curvature tensor, and the Ricci tensor7. We
can characterize a gravitational field by assessing how it

screen.
7 We regard the stress-energy tensor of matter as sourcing the

curvature of spacetime, not as part of its description.

is distributed between these three tensors. A loose phys-
ical interpretation runs thus: the metric describes the
curvature of the spacetime at a point; the Ricci tensor
describes how much of that curvature can be attributed
to the local mass at that point (since the Ricci tensor
vanishes in vacuum); the Riemann curvature tensor de-
scribes the total curvature due to both local masses and
the gravitational fields of other masses at a distance.
We wish to construct scalars which quantify the rela-

tive importance of each of these three tensors for a given
gravitational field. However, the obvious choice for the
Ricci tensor – the canonical Ricci scalar – vanishes in vac-
uum and radiation-dominated systems, making it awk-
ward for the purposes of this paper8,9. Hence we will
focus our attention on the remaining two tensors, the
metric and the Riemann curvature tensor.
Let us first consider the example of a test particle situ-

ated at a radial distance r from a central object of mass
M . The deviation of the metric from Minkowski form is
characterized by the magnitude of the Newtonian gravi-
tational potential,

✏ ⌘ GM

rc2
. (1)

The strongest gravitational fields accessible to an ob-
server correspond to the limit ✏ ! O(1), when the cen-
tral object is a black hole and the test particle orbits
close to the event horizon. Although equation (1) is a
coordinate-dependent statement, it can be linked to a di-
rectly observable (and therefore coordinate-independent)
quantity, namely the gravitational redshift of emission
lines from a star or similar object. Hence equation (1)
is a valid parameter for assessing the approximate mag-
nitude of the components of the metric outside a single
object in vacuum.
We will measure the approximate magnitude of the

Riemann curvature tensor through the Kretschmann
scalar (R↵���R↵���)1/2. The Kretschmann scalar for the
Schwarzschild metric is

⇠ =
�
R↵���R↵���

�
1/2

=
p
48

GM

r3c2
. (2)

The first equality above is coordinate-independent, and
serves as our formal definition of ⇠; the second equality is
merely an illustratory example for the choice of standard
Schwarzchild coordinates. The corresponding expression
for rotating objects is more complicated (Henry 2000).
However, the additional prefactors will make little di↵er-
ence on the axis ranges used in this paper (see Fig. 1),
and so will be neglected.
The parameters ✏ and ⇠ above define a two-dimensional

space on which we can place the gravitational fields
probed by di↵erent objects, observations and experi-
ments. For simplicity we will informally refer to these
parameters as the ‘curvature’ and the ‘potential’ of the
spacetime, though this is not strictly accurate in all the
contexts we consider. We stress that our parameters ✏
and ⇠ depart from the physical potential and curvature

8 For example, R does not distinguish between a particle in orbit
around a black hole (a vacuum situation) and the early universe (a
radiation-dominated situation), since it is zero in both cases.

9 Note that the other semi-obvious choice,
�
R

↵�

R↵�

� 1
2 , simi-

larly vanishes.
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Figure 2.1. This diagram illustrates how Lovelock’s theorem serves as a guide to classify modified
theories of gravity. Each yellow box represents a class of modified theories of gravity that arises from
violating one of the assumptions underlying the theorem. A theory can, in general, belong to multiple
classes. See Table 1 for a more precise classification.

2. Extensions of general relativity: motivation and overview

2.1. A compass to navigate the modified-gravity atlas

There are countless inequivalent ways to modify GR, many of them leading to theories
that can be designed to agree with current observations. Cosmological observations
and fundamental physics considerations suggest that GR must be modified at very
low and/or very high energies. Experimental searches for beyond-GR physics are a
particularly active and well motivated area of research, so it is natural to look for a
guiding principle: if we were to find experimental hints of modifications of GR, which
of the assumptions underlying Einstein’s theory should be abandoned?

Such a guiding principle can be found by examining the building blocks of
Einstein’s theory. Lovelock’s theorem [187, 188] is particularly useful in this context.
In simple terms, the theorem states that GR emerges as the unique theory of gravity
under specific assumptions. More precisely, it can be articulated as follows:

In four spacetime dimensions the only divergence-free symmetric rank-2
tensor constructed solely from the metric gµ⌫ and its derivatives up to second
differential order, and preserving diffeomorphism invariance, is the Einstein
tensor plus a cosmological term.

A	  guiding	  principle	  to	  modify	  GR:	  Lovelock’s	  theorem	  
“In	  four	  spaceBme	  dimensions	  the	  only	  divergence-‐free	  symmetric	  rank-‐2	  tensor	  
constructed	  solely	  from	  the	  metric	  and	  its	  derivaBves	  up	  to	  second	  differenBal	  
order,	  and	  preserving	  diffeomorphism	  invariance,	  is	  the	  Einstein	  tensor	  plus	  a	  
cosmological	  term.”	  

[EB+,	  1501.07274]	  	  
[So8riou+,	  0707.2748]	  



…and about what? 



Lovelock	  theorem	  as	  a	  map	  for	  the	  modified	  gravity	  zoo	  
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Einstein’s theory. Lovelock’s theorem [187, 188] is particularly useful in this context.
In simple terms, the theorem states that GR emerges as the unique theory of gravity
under specific assumptions. More precisely, it can be articulated as follows:

In four spacetime dimensions the only divergence-free symmetric rank-2
tensor constructed solely from the metric gµ⌫ and its derivatives up to second
differential order, and preserving diffeomorphism invariance, is the Einstein
tensor plus a cosmological term.



Telescope [13] and a space-based, LISA-like mission [14, 15, 16] in the long term) is precisely
their potential to test GR in strong-field, high-velocity regimes inaccessible to Solar System and
binary pulsar experiments. The strength of these tests will depend on two key elements: (i) the
signal-to-noise ratio (SNR) of individual observations [17], that also a↵ects accuracy in binary
parameter estimation, and (ii) the number N of observations that can be used to constrain GR.
The reason is that, given a theory whose deviations from GR can be parametrized by one or
more universal parameters (e.g. coupling constants), the bounds on these parameters will scale
roughly with

p
N (as a matter of fact the bounds could improve faster than

p
N if some events are

particularly loud: see e.g. [18, 19] for detailed analyses addressing specific modifications to GR
in the Advanced LIGO/eLISA context, respectively). Second-generation interferometers such
as Advanced LIGO are expected to detect a large number of compact binary coalescence events
[20, 21]. Unfortunately from the point of view of testing GR, most binary mergers detected by
Advanced LIGO/Virgo are expected to have low signal-to-noise ratios (a possible exception is
the observation of intermediate-mass BH mergers [22], that would be a great discovery in and
by itself). Third generation detectors such as the Einstein Telescope will perform significantly
better in terms of parameter estimation and tests of alternative theories [23, 24]. As I will argue
below, a LISA-like mission will be the ideal instrument to put GR to the test, constraining the
cosmological growth of supermassive BHs and testing gravity in unprecedented ways [15, 16].

Before turning to a discussion of tests of GR that will be possible in the near future, I will
present a short overview of GR alternatives that are considered as plausible contenders at the
time of writing and single out one of them (namely, massive scalar-tensor theories) as particularly
interesting.

2. Testing general relativity: against what?

Several extensions of GR have been proposed recently (see e.g. [2] for an excellent review).
Among these models, the ones whose observational consequences have been better explored
in various contexts (including cosmology, Solar System experiments, the structure of compact
stars and gravitational radiation from binary systems) can be summarized via the following
Lagrangian density:

L = f0(|�|)R (1)

��(|�|)@a�⇤@a�� V (|�|) + Lmat
⇥
 , A2(|�|)gab

⇤

+f1(|�|)R2
GB + f2(|�|)Rabcd

⇤Rabcd

L = f0(�)R (2)

�!(�)@a�@
a��M(�) + Lmat

⇥
 , A2(�)gab

⇤

+f1(�)(R
2 � 4RabR

ab +RabcdR
abcd)

+f2(�)Rabcd
⇤Rabcd

where Rabcd is the Riemann tensor corresponding to the metric gab, Rab is the Ricci tensor,
R is the Ricci scalar and  denotes matter fields. The functions fi(|�|) (i = 0 , . . . , 2), V (|�|)
and A(|�|) are in principle arbitrary, but they are not all independent (in the sense that, for
example, some of them can be set equal to one via field redefinitions without loss of generality).
This Lagrangian allows for all models in which gravity is coupled to a single (generically
charged) scalar field � in all possible ways, including all linearly independent quadratic curvature
corrections to GR. The requirement that the field equations should be second-order means that

Tests	  of	  general	  rela+vity	  –	  against	  what?	  
§  Ac8on	  principle	  
§  Well-‐posed	  
§  Testable	  predic8ons	  
§  Cosmologically	  viable,	  BHs,	  neutron	  stars	  

[Gair+,1212.5575;	  Cli^on+,	  1106.2476]	  

Alterna8ve	  theories	  usually:	  	  
	  Introduce	  more	  fields	  (scalars,	  vectors)	  or	  higher-‐curvature	  terms	  
	  Need	  strong-‐field	  tests!	  Challenge	  pillars	  of	  general	  rela8vity:	  
§  Equivalence	  principle	  
§  Lorentz	  invariance	  (Einstein-‐aether,	  TeVeS…)	  
§  Parity	  conserva8on…	  

+	  Lorentz-‐viola8ng	  terms…	  



Proper+es	  of	  (some)	  modified	  gravity	  theories	  

[EB+,	  arXiv:1501.07274]	  
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Theory Field
content

Strong
EP

Massless
graviton

Lorentz
symmetry

Linear
Tµ⌫

Weak
EP

Well-
posed?

Weak-field
constraints

Extra scalar field
Scalar-tensor S 7 X X X X X [34] [35–37]
Multiscalar S 7 X X X X X [38] [39]
Metric f(R) S 7 X X X X X [40, 41] [42]
Quadratic gravity

Gauss-Bonnet S 7 X X X X X? [43]
Chern-Simons P 7 X X X X 7X? [44] [45]
Generic S/P 7 X X X X ?

Horndeski S 7 X X X X X?
Lorentz-violating

Æ-gravity SV 7 X 7 X X X? [46–49]
Khronometric/
Hořava-Lifshitz S 7 X 7 X X X? [48–51]
n-DBI S 7 X 7 X X ? none ( [52])

Massive gravity
dRGT/Bimetric SVT 7 7 X X X ? [17]
Galileon S 7 X X X X X? [17,53]

Nondynamical fields
Palatini f(R) – X X X 7 X X none
Eddington-Born-Infeld – X X X 7 X ? none

Others, not covered here
TeVeS SVT 7 X X X X ? [37]
f(R)Lm ? 7 X X X 7 ?
f(T ) ? 7 X 7 X X ? [54]

Table 1. Catalog of several theories of gravity and their relation with the assumptions of Lovelock’s theorem. Each theory violates at least one assumption
(see also Figure 2.1), and can be seen as a proxy for testing a specific principle underlying GR. See text for details of the entries. Key to abbreviations: S:
scalar; P: pseudoscalar; V: vector; T: tensor; ?: unknown; X?: not explored in detail or not rigorously proven, but there exist arguments to expect X. The
occurrence of 7X? means that there exist arguments in favor of well-posedness within the EFT formulation, and against well-posedness for the full theory.
Weak-field constraints (as opposed to strong-field constraints, which are the main topic of this review) refer to Solar System and binary pulsar tests. Entries
below the last horizontal line are not covered in this review.



Compact stars in 
general relativity 

and modified gravity



Strong-field signatures:  
high curvatures in interior, spontaneous scalarization… 
 

Observables? Consider the Hartle-Thorne expansion in Ω/(M/R3)1/2 
 

Zero order in rotation: M(R) - mass-radius relation 
 Radii hard to measure, both in binaries and in isolated systems 

“Internal”	  tests:	  neutron	  stars	  

and satisfies the boundary condition

!xR ¼ X" R
3

d !x
dr

! "

R
¼ X 1" 2I

R3

! "
: ð6Þ

In the above, j = e"(k+m)/2. An approximation (Lattimer and Schutz,
2005) valid for normal EOS’s without severe softening is

I ’ ð0:237% 0:008ÞMR2 & 1þ 4:2
Mkm
RM(

þ 90
Mkm
RM(

! "4
" #

ð7Þ

shown in Fig. 3 together with typical EOS’s and analytic solutions.

2.1. Mass-Radius diagram for neutron stars

Integration of the TOV Eq. (1) yields mass-radius curves (Fig. 4).
Dramatic differences exist among normal EOS’s and also between
normal and strange quark matter EOS’s. In contrast to Newtonian
gravity, a maximum mass for each EOS exists in GR. In addition,
a minimum mass exists, but is only about 0.09 M( (not shown
since Rmin ) 200 km). It is interesting that many normal nucleonic

EOS’s have the property that R is relatively independent of M near
1 M(. This behavior is related to an approximate n = 1 polytropic
behavior of these EOS’s.

2.2. Analytic solutions to Einstein’s equations

Analytic solutions help to understand the trends observed in the
preceding three figures. Although there are hundreds of analytic
solutions to Einstein’s equations, only 3 satisfy the criteria that
the pressure and energy density vanish on the boundary R, and that
the pressure and energy density decrease monotonically with
increasing radius. Of the many in which the pressure vanishes on
the surface but the energy density does not (which could be used
to model self-bound or strange quark stars), two are especially
simple. These analytic solutions are:

* Uniform density, q = constant (Schwarzschild, 1916)
* Tolman VII (Tolman, 1939), q = qc[1 " (r/R)2]
* Buchdahl’s solution (Buchdahl, 1967)

q ¼ 12
ffiffiffiffiffiffiffiffi
p+p
p

" 5p: ð8Þ

* Nariai IV (Nariai, 1951)
* Tolman IV variant (Lake, 2003)

m
M
¼ r

R

$ %3 2R" 2M
2R" 5M þ 3Mr2=R2

 !2=3

: ð9Þ

Details of these solutions can be found in Lattimer and Prakash
(2001). Analytic solutions have M/R as a parameter and so can be
plotted in Figs. 2 and 3.

2.3. Neutron star maximum mass and compactness limit

Rhoades and Ruffini (1974) showed that the causally limiting
equation of state p = po + q " qo for q > qo results in a neutron star
maximum mass that is practically independent of the equation of
state for q < qo, and is Mmax ¼ 4:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qs=qo

p
M( Here

qs = 2.7 , 1014 g cm"3 is the nuclear saturation density. One also
finds for this equation of state that Rmax ¼ 18:5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qs=qo

p
km. Since

the most compact configuration is achieved at the maximum mass,
this represents the limiting value of M/R for causality, as Lattimer
et al. (1990) pointed out. This result was reinforced by Glenden-
ning (1992) who performed a parametrized variational calculation
to find the most compact possible stars as a function of mass. The
limit is shown in Fig. 4.

2.4. Maximal rotation rates for neutron stars

The absolute maximum rotation rate is set by the ‘‘mass-shed-

ding” limit X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

q
, or

Prigid
min ¼ 0:55

10km
R

! "3=2 M
M(

! "1=2

ms ð10Þ

for a rigid sphere. However, the actual period limit is larger because
rotation increases the equatorial radius. In the so-called Roche
model, as described in Shapiro and Teukolsky (1983) one treats
the rotating star as being highly centrally compressed. The gravita-
tional potential near the surface is UG = "GM/r and the centrifugal
potential is Uc = "(1/2)X2r2sin2h, so

ð1=qÞrP ¼ rh ¼ "rUG "rUc: ð11Þ

Integrating from the surface to an interior point along the equator,

hðrÞ " GM=r " ð1=2ÞX2r2 ¼ K ¼ "GM=re " ð1=2ÞX2r2
e ; ð12Þ

Fig. 3. Moments of inertia of neutron star models. Key to EOS’s is in (Lattimer and
Prakash, 2001). The thicker curves with larger text symbols represent various
analytic solutions. The shaded gray band indicates an approximation. Inset shows
the behavior for small M/R.

Fig. 4. Mass–Radius diagram. The lines denoted GR, P <1, and causality represent
limits to physically realistic structures (see text). Black curves are for normal
nucleonic EOS’s, while green curves (SQM1 and SQM3) are for pure strange quark
matter stars. The notation for the EOS’s is detailed in Lattimer and Prakash (2001).
The red region labeled rotation shows a limit derived from the most rapidly rotating
pulsar. Orange curves are contours of radiation radii R1 ¼ R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" 2GM=R

p
. (For

interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

J.M. Lattimer / New Astronomy Reviews 54 (2010) 101–109 103



Strong-field signatures:  
high curvatures in interior, spontaneous scalarization… 
 

Observables? Consider the Hartle-Thorne expansion in Ω/(M/R3)1/2 
 

Zero order in rotation: M(R) - mass-radius relation 
 Radii hard to measure, both in binaries and in isolated systems 

 

Corrections:  
 Moment of inertia I may be measurable in binary pulsars  
 [Lattimer-Schutz, Kramer, Wex…] 
  
 Tidal “Love number” may be measurable in binary inspirals 
 [Mora-Will, Berti-Iyer-Will, Read, Hinderer, Lang, Binnington, Poisson, 
 Vines, Damour, Nagar, Bernuzzi, Villain, Favata, Yagi, Yunes…] 
  
 Quadrupole Q or higher-order moments: light curves or QPOs 
 [Laarakkers-Poisson, Berti-Stergioulas, BWMB, Baubock+, Pappas…]  
  

 

Stellar oscillations 

Neutron	  stars	  as	  EOS	  probes	  
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Theory Structure Collapse Sensitivities Stability Geodesics
NR SR FR

Extra scalar field
Scalar-Tensor [109–114] [112,115,116] [117–119] [120–127] [128] [129–139] [118,140]
Multiscalar ? ? ? ? ? ? ?
Metric f(R) [141–153] [154] [155] [156,157] ? [158,159] ?
Quadratic gravity

Gauss-Bonnet [160] [160] [77] ? ? ? ?
Chern-Simons ⌘ GR [25,40,161–163] ? ? [162] ? ?

Horndeski ? ? ? ? ? ? ?
Lorentz-violating

Æ-gravity [164,165] ? ? [166] [43,44] [158] ?
Khronometric/
Hořava-Lifshitz [167] ? ? ? [43,44] ? ?
n-DBI ? ? ? ? ? ? ?

Massive gravity
dRGT/Bimetric [168,169] ? ? ? ? ? ?
Galileon [170] [170] ? [171,172] ? ? ?

Nondynamical fields
Palatini f(R) [173–177] ? ? ? – ? ?
Eddington-Born-Infeld [178–184] [178,179] ? [179] – [185,186] ?

Table 3. Catalog of NS properties in several theories of gravity. Symbols and abbreviations are the same as in Table 2.

[EB+,	  arXiv:1501.07274]	  
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ða rbÞR" 2Rrðav

ð1Þ
bÞ þgab½2Rrcvð1Þ

c þ 4vð1Þ
c rcR'þf1

!
2RabR" 2rabR" 1

2
gab½R2" 4hR'

"
;

Iab !"vð2Þ
ða rbÞR" 2vð2Þ

c ½rðaR
c
bÞ "rcRab'þrcvð2Þ

c Rab" 2Rcðarcvð2Þ
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c rcRþRcdrcv
ð2Þ
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þf2

!
2RcdRacbd"rabRþhRabþ

1

2
gab½hR"RcdR

cd'
"
;

J ab !"8vð3Þ
c ½rðaRbÞ

c"rcRab'þ 4Rd
acbrcvð3Þ

d "f3

!
2½RabR" 4RcdRacbdþrabR" 2hRab'"

1

2
gab½R2" 4RcdR

cd'
"
;

Kab ! 4vð4Þ
c !cdeðareRbÞ

dþ 4rdv
ð4Þ
c

(Rða
c
bÞ
d; (5)

with vðiÞ
a ! rafiðj"jÞ,rab ¼ rarb,h ¼ rara and !abcd

the Levi-Civita tensor. The modified Klein-Gordon equa-
tion reads

h"¼ "

2j"j# ½V 0"#0@a"
(@a""f00R"f01R

2"f02RabR
ab

"f03RabcdR
abcd"f04Rabcd

(Rabcd"A0A3Tmat';
(6)

together with its complex conjugate. In the equations
above, a prime denotes a derivative with respect to j"j.

As shown in Table I, this theory is sufficient to discuss
stellar structure in many of the alternative theories listed in
Sec. II (and it can also describe boson stars in general
relativity, if we work in vacuum). As a matter of fact, some
terms in the Lagrangian (2) are redundant. For example, in
ordinary scalar-tensor theories the functions f0 and # can
be removed via a conformal transformation of the metric
and a redefinition of the scalar field; i.e., by reformulating
the theory in the Einstein frame [24]. However, depending
on the explicit form of f0 and #, these transformations can
be hard (if not impossible) to write in closed analytic form.
For this reason we find it convenient to start from the
general Lagrangian (2), which reduces to standard scalar-
tensor theories in the Jordan frame if Aðj"jÞ ! 1 and in the
Einstein frame if f0ðj"jÞ ! 1=ð16$Þ and #ðj"jÞ ! 1.
Another advantage of this approach is that, at least in
principle, it should also encompass generic fðRÞ theories,
which are equivalent to particular scalar-tensor theories
(but see [45] for possible issues with this point of view).

Simplifying the model

For generic coupling functions, the terms H ab, Iab,
J ab appearing on the left-hand side of the equations of
motion introduce higher-order derivatives of the metric
functions, unless quadratic terms in the curvature enter
the action in the GB combination (1). The GB combination
corresponds to setting f2 ¼ "4f1 and f3 ¼ f1 in our
model. Thus, if we only want second-order equations of
motion the Lagrangian (2) must reduce to

L ¼ f0ðj"jÞRþ f1ðj"jÞR2
GB þ f4ðj"jÞRabcd

(Rabcd

" #ðj"jÞ@a"(@a"" Vðj"jÞ þLmat½!; A2ðj"jÞgab':
(7)

In order to avoid the complications related to higher-
order derivatives, from now on we will specialize to this
Lagrangian.

IV. PERFECT-FLUID COMPACT STARS IN
EXTENDED SCALAR-TENSOR THEORIES

A. Static solutions

We begin by looking for static, spherically symmetric
equilibrium solutions of the field equations with metric

ds20 ¼ "BðrÞdt2 þ dr2

1" 2mðrÞ=rþ r2d%2 þ r2sin2%d’2

and a charged, spherically symmetric scalar field

TABLE I. Specific models obtained from the Lagrangian (2). Here & ! ð16$GÞ"1.

f0 f1 f2 f3 f4 ! V # A Lmat

General relativity & 0 0 0 0 0 0 1 1 perfect fluid
Scalar-tensor (Jordan frame) [24] Fð"Þ 0 0 0 0 0 Vð"Þ #ð"Þ 1 perfect fluid
Scalar-tensor (Einstein frame) [23] & 0 0 0 0 0 Vð"Þ 2& Að"Þ perfect fluid
fðRÞ [36] & 0 0 0 0 0 & Rf;R"f

16$ "Gf2;R
2& f"1=2

0 ¼ f"1=2
;R perfect fluid

Quadratic gravity [47] & '1" '2" '3" '4" 0 0 1 1 perfect fluid
EDGB [48] & e(" "4f1 f1 0 0 0 1 1 perfect fluid
Dynamical Chern-Simons [59] & 0 0 0 (" 0 0 1 1 perfect fluid
Boson stars [71] & 0 0 0 0 ! m2

2 j"j2 1 1 0

PANI et al. PHYSICAL REVIEW D 84, 104035 (2011)

104035-4

[Yunes	  &	  Stein,	  1101.2921]	  
[Pani+,	  1109.0928]	  

A	  “theory	  of	  theories”	  

The study of EDGB gravity in relativistic astrophysics
has been limited to a mathematical analysis of black hole
solutions [48,50–52] and, more recently, to their possible
observational signatures [47,53,54]. To our knowledge, the
present study is the first investigation of compact stars in
the theory (see Refs. [55,56] for other nonrotating solutions
in EDGB theory).

Parity-violating theories. Chern-Simons gravity is the
simplest theory that allows for parity-violating corrections
to general relativity [57]. Because of the nature of the
Chern-Simons corrections, all spherically symmetric
solutions of Einstein’s theory are also solutions of Chern-
Simons gravity. However, spinning objects in the nondy-
namical [58] and dynamical [59] versions of the theory are
affected by the Chern-Simons coupling. Future observa-
tions of the moment of inertia of compact stars may
strongly constrain the parameters of the theory [59].

Lorentz-violating theories. Einstein-aether theory intro-
duces a dynamical unit timelike vector coupled to gravity
as a natural way to implement Lorentz violation in
Einstein’s theory. In the parameter space compatible with
Solar System constraints, spherically symmetric neutron
stars in Einstein-aether theory have a lower maximum
mass than in general relativity [60,61]. Another popular
Lorentz-violating theory is Hořava gravity. The matching
conditions necessary to obtain stellar solutions in this
theory were considered in [62], but (to our knowledge)
there are no phenomenological studies of compact stars
using realistic EOS models.

Massive gravity. Recently, Damour et al. [63] reconsid-
ered the discontinuity problem of massive gravity and its
possible resolution through Vainshtein’s nonlinear resum-
mation of nonlinear effects. As part of this study, the
authors investigated the viability of spherically symmetric
stars in the theory. They showed that some solutions have
physical singularities, but also that there exist regular
solutions interpolating between a modified general relativ-
istic interior and a de Sitter exterior, with curvature pro-
portional to the square of the putative graviton mass. A
more phenomenological study of observational constraints
(including stellar rotation) is still lacking.

Eddington-inspired gravity. Bañados and Ferreira [64]
recently proposed a theory that is equivalent to general
relativity in vacuum, but differs from it in the coupling with
matter. An interesting aspect of this theory is that singu-
larities cannot form in early cosmology and during gravi-
tational collapse [64,65]. The maximum mass of compact
stars in the observationally viable sector of Eddington-
inspired gravity may be larger than in general relativity,
even for ‘‘ordinary’’ EOS models [65].

Gravitational-aether, f(T), TeVeS and other theories.
Some alternatives to general relativity that were proposed
to explain cosmological observations have also been
analyzed, at least to some extent, in the context
of compact stars. Among these theories we can list

‘‘gravitational-aether’’ theory [66], fðTÞ gravity [67] and
Bekenstein’s TeVeS [68]. In higher-dimensional brane-
world models, the embedding of four-dimensional stellar
solutions ‘‘on the brane’’ within acceptable higher-
dimensional solution is a nontrivial problem [69] (but see
[70] for related work in a slightly different context).

III. EXTENDED SCALAR-TENSOR THEORIES

From the previous summary it should be clear that it is
nearly impossible to discuss all strong-field modifications
of general relativity in a unified framework. However, in
this section we show that on the basis of some rather
general arguments we can easily write down a
Lagrangian encompassing the first four classes of theories
reviewed above (namely general scalar-tensor theories,
fðRÞ theories, EDGB gravity and Chern-Simons gravity).
Our starting point is a Lagrangian in which gravity is

coupled to a single (generically charged) scalar field ! in
all possible ways, including all linearly independent qua-
dratic curvature corrections to general relativity. We call
these models ‘‘extended scalar-tensor theories.’’ The most
general Lagrangian of such a theory contains several func-
tions of the scalar field in the combination

L ¼ f0ðj!jÞR$ "ðj!jÞ@a!%@a!$ Vðj!jÞ þ f1ðj!jÞR2

þ f2ðj!jÞRabR
ab þ f3ðj!jÞRabcdR

abcd

þ f4ðj!jÞRabcd
%Rabcd þLmat½!; A2ðj!jÞgab(; (2)

where %Rabcd is the dual of the Riemann tensor, which
introduces possible parity-violating corrections [57]. From
the Lagrangian above, the equations of motion read:

Gab þ
1

f0
½H ab þ Iab þ J ab þKab(

¼ 1

2f0
½A2Tmat

ab þ Tð!Þ
ab (; (3)

where Tmat
ab ¼ 2ð$gÞ$1=2#Sm=#gab is the matter stress-

energy tensor in the Jordan frame,

Tð!Þ
ab ¼ "½2@ða!%@bÞ!$ gab@c!

%@c!(
$ gabV þ 2rarbf0 $ 2gabr2f0; (4)

and, following the notation of Ref. [47], we have defined

COMPACT STARS IN ALTERNATIVE THEORIES OF . . . PHYSICAL REVIEW D 84, 104035 (2011)
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Example #1: 
scalar-tensor theory

Pani+EB 1405.4547; Silva+ 1410.2511, 1411.6286 



Scalar-‐tensor	  theory	  and	  spontaneous	  scalariza+on	  
§  Ac8on	  (in	  the	  “Einstein	  frame”):	  

	  
	  
	  

§  Gravity-‐maher	  coupling:	  
	  
	  
	  
	  

§  Field	  equa8ons:	  

[Damour+Esposito-Farese, PRL 70, 2220 (1993); PRD 54, 1474 (1996); EB+,
1501.07274] 
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action

S =
1

16⇡

Z

d4x
p�g? [R? � 2g?µ⌫ (@µ') (@⌫') � V (')] + SM [ , A2(')g?µ⌫ ] , (2.4)

where g? and R? are the determinant and Ricci scalar of g?µ⌫ , respectively, and
V (') = A4(')U(�(')). The price paid for the minimal coupling of the scalar field in
the gravitational sector is the non-minimal coupling in the matter sector of the action:
particle masses and fundamental constants depend on the scalar field.

We remark that the actions (2.3) and (2.4) are just different representations
of the same theory: the outcome of an experiment will not depend on the chosen
representation, as long as one takes into account that the units of physical quantities
do scale with powers of the conformal factor A [189, 217]. It is then legitimate, when
modeling a physical process, to choose the conformal frame in which calculations are
simpler: for instance, in vacuum the Einstein-frame action (2.4) formally reduces to
the GR action minimally coupled with a scalar field. It may then be necessary to
change the conformal frame when extracting physically meaningful statements (since
the scalar field is minimally coupled to matter in the Jordan frame, test particles
follow geodesics of the Jordan-frame metric, not of the Einstein-frame metric).

The relation between Jordan-frame and Einstein-frame quantites is simply � =
A�2('), 3 + 2!(�) = ↵(')�2, where ↵(') ⌘ d(ln A('))/d' [2]. Note that the theory
is fixed once the function !(�) – or, equivalently, ↵(') – is fixed, and the form of the
scalar potential is chosen. Moreover, most phenomenological studies neglect the scalar
potential. This approximation corresponds to neglecting the cosmological term, the
mass of the scalar field and any possible scalar self-interaction. In an asymptotically
flat spacetime the scalar field tends to a constant �0 at spatial infinity, corresponding
to a minimum of the potential. Taylor expanding U(�) around �0 yields a cosmological
constant and a mass term for the scalar field to the lowest orders [32,210].

Scalar-tensor theory with a vanishing scalar potential is characterized by a single
function ↵('). The expansion of this function around the asymptotic value '0 can be
written in the form

↵(') = ↵0 + �0(' � '0) + . . . (2.5)

As mentioned above, the choice ↵(') = ↵0 =constant (i.e., !(�) =constant)
corresponds to Brans-Dicke theory. A more general formulation, proposed by Damour
and Esposito-Farèse, is parametrized by ↵0 and �0 [111,112]. Another simple variant
is massive Brans-Dicke theory, in which ↵(') is constant, but the potential is non-
vanishing and has the form U(�) = 1

2U 00(�0)(���0)
2, so that the scalar field has a mass

m2
s ⇠ U 00(�0). Note that since the scalar field ' in the action (2.4) is dimensionless,

the function ↵(') and the constants ↵0, �0 are dimensionless as well.
The field equations of scalar-tensor theory in the Jordan frame are (see e.g. [218],
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where Tµ⌫ = �2(�g)�1/2�SM ( , gµ⌫)/�gµ⌫ is the Jordan-frame stress-energy tensor
of matter fields, and T = gµ⌫Tµ⌫ .
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In the Einstein frame, the field equations are
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where T ?µ⌫ = �2(�g)�1/2�SM ( , A2g?µ⌫)/�g?µ⌫ is the Einstein-frame stress-energy
tensor of matter fields and T ? = g?µ⌫T ?

µ⌫ (see e.g. [34]). Eq. (2.7b) shows that ↵(')
couples the scalar fields to matter [220], as does (3 + 2!(�))�1 in the Jordan frame:
cf. Eq. (2.6b)].

Astrophysical observations set bounds on the parameter space of scalar-tensor
theories. In the case of Brans-Dicke theory, the best observational bound (↵0 <
3.5 ⇥ 10�3) comes from the Cassini measurement of the Shapiro time delay. In the
more general case with �0 6= 0, current constraints on (↵0, �0) have been obtained
by observations of NS-NS and NS-WD binary systems [33], and will be discussed in
Section 6 (cf. Figure 6.3). Observations of compact binary systems also constrain
massive Brans-Dicke theory, leading to exclusion regions in the (↵0, ms) plane [32].

An interesting feature of scalar-tensor gravity is the prediction of certain
characteristic physical phenomena which do not occur at all in GR. Even though we
know from observations that ↵0 ⌧ 1 and that GR deviations are generally small,
these phenomena may lead to observable consequences. There are at least three
possible smoking guns of scalar-tensor gravity. The first is the emission of dipolar
gravitational radiation from compact binary systems [218,221], which will be discussed
in Section 5.1. Dipolar gravitational radiation is “pre-Newtonian,” i.e. it occurs at
lower PN order than quadrupole radiation, and it does not exist in GR. The second is
the existence of non-perturbative NS solutions in which the scalar field amplitude is
finite even for ↵0 ⌧ 1. This spontaneous scalarization phenomenon [111, 112] will be
discussed in detail in Section 4.2. Here we only remark that spontaneous scalarization
would significantly affect the mass and radius of a NS, and therefore the orbital
motion of a compact binary system, even far from coalescence. The third example is
also non-perturbative, and it involves massive fields. The coupling of massive scalar
fields to matter in orbit around rotating BHs leads to a surprising effect: because of
superradiance, matter can hover into “floating orbits” for which the net gravitational
energy loss at infinity is entirely provided by the BH’s rotational energy [222].

The phenomenology of scalar-tensor theory in vacuum spacetimes, such as BH
spacetimes, is less interesting. When the matter action SM can be neglected, the
Einstein-frame formulation of the theory is equivalent to GR minimally coupled to
a scalar field. BHs in Bergmann-Wagoner theories satisfy the same no-hair theorem
as in GR, and thus the stationary BH solutions in the two theories coincide [51, 54].
Moreover, dynamical (vacuum) BH spacetimes satisfy a similar generalized no-hair
theorem: the dynamics of a BH binary system in Bergmann-Wagoner theory with
vanishing potential are the same as in GR, up to at least 2.5 PN order for generic
mass ratios [223] and at any PN order in the extreme mass-ratio limit [224] (see
Section 5.1.1). These no-hair theorems will be discussed in Section 3.2.
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[Leonardo: Introduction extended] Modifications of general relativity (GR)
generically lead to the introduction of additional degrees of freedom [?]. The simplest
and best studied extension of GR is scalar-tensor (ST) theory, in which one or more
scalar fields are included in the gravitational sector of the action, through a non-
minimal coupling between the Ricci scalar and a function of the scalar field(s). A
further motivation to study ST theories is that they appear in different contexts
in high-energy theories and models: they can be obtained as low-energy limit of
string theories [?], in Kaluza-Klein-like theories [?] or in braneworld scenarios [?,?].
Moreover, ST theories appear in cosmological models [?].

Already in the middle of the XXth century, Jordan, Fierz, Brans and Dicke
proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
generalized by Bergmann and Wagoner, who considered the most general ST theory
with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
on, Damour and Esposito-Farese proposed the tensor-multi-scalar (TMS) theory,
which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
by advanced gravitational-wave detectors.
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binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
by advanced gravitational-wave detectors.
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[Leonardo: Introduction extended] Modifications of general relativity (GR)
generically lead to the introduction of additional degrees of freedom [?]. The simplest
and best studied extension of GR is scalar-tensor (ST) theory, in which one or more
scalar fields are included in the gravitational sector of the action, through a non-
minimal coupling between the Ricci scalar and a function of the scalar field(s). A
further motivation to study ST theories is that they appear in different contexts
in high-energy theories and models: they can be obtained as low-energy limit of
string theories [?], in Kaluza-Klein-like theories [?] or in braneworld scenarios [?,?].
Moreover, ST theories appear in cosmological models [?].

Already in the middle of the XXth century, Jordan, Fierz, Brans and Dicke
proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
generalized by Bergmann and Wagoner, who considered the most general ST theory
with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
on, Damour and Esposito-Farese proposed the tensor-multi-scalar (TMS) theory,
which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
by advanced gravitational-wave detectors.
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[Leonardo: Introduction extended] Modifications of general relativity (GR)
generically lead to the introduction of additional degrees of freedom [?]. The simplest
and best studied extension of GR is scalar-tensor (ST) theory, in which one or more
scalar fields are included in the gravitational sector of the action, through a non-
minimal coupling between the Ricci scalar and a function of the scalar field(s). A
further motivation to study ST theories is that they appear in different contexts
in high-energy theories and models: they can be obtained as low-energy limit of
string theories [?], in Kaluza-Klein-like theories [?] or in braneworld scenarios [?,?].
Moreover, ST theories appear in cosmological models [?].

Already in the middle of the XXth century, Jordan, Fierz, Brans and Dicke
proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
generalized by Bergmann and Wagoner, who considered the most general ST theory
with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
on, Damour and Esposito-Farese proposed the tensor-multi-scalar (TMS) theory,
which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
by advanced gravitational-wave detectors.
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[Leonardo: Introduction extended] Modifications of general relativity (GR)
generically lead to the introduction of additional degrees of freedom [?]. The simplest
and best studied extension of GR is scalar-tensor (ST) theory, in which one or more
scalar fields are included in the gravitational sector of the action, through a non-
minimal coupling between the Ricci scalar and a function of the scalar field(s). A
further motivation to study ST theories is that they appear in different contexts
in high-energy theories and models: they can be obtained as low-energy limit of
string theories [?], in Kaluza-Klein-like theories [?] or in braneworld scenarios [?,?].
Moreover, ST theories appear in cosmological models [?].

Already in the middle of the XXth century, Jordan, Fierz, Brans and Dicke
proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
generalized by Bergmann and Wagoner, who considered the most general ST theory
with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
on, Damour and Esposito-Farese proposed the tensor-multi-scalar (TMS) theory,
which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
by advanced gravitational-wave detectors.
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Figure 4.1. NS configurations in GR (solid lines) and in two scalar-tensor theories defined by
Eq. (2.4) with A(') ⌘ e

1
2
�0'

2
and V (') ⌘ 0. Dashed lines refer to �0 = �4.5, '

1
0 /

p
4⇡ = 10�3;

dash-dotted lines refer to �0 = �6, '

1
0 /

p
4⇡ = 10�3. Each panel shows results for three different

EOS models (FPS, APR and MS1). Top-left panel, left inset: relation between the nonrotating mass M

and the radius R in the Einstein frame. Top-left panel, right inset: relative mass correction �M/M

induced by rotation as a function of the mass M of a nonspinning star with the same central energy
density. Top-right panel, left inset: scalar charge q̃/M as a function of M . Top-right panel, right
inset: relative correction to the scalar charge �q̃/q̃ induced by rotation as a function of M . Bottom-
left panel: Jordan-frame moment of inertia Ĩ (left inset) and Jordan-frame quadrupole moment Q̃

(right inset) as functions of M . Bottom-right panel: Jordan-frame tidal (�̃) and rotational (�̃rot)
Love numbers as functions of M . [From [116].]

Spontaneous scalarization and quantum instabilities in scalar-tensor theories with
a conformal coupling. An interesting class of scalar-tensor theories that has been
recently investigated in the context of NS physics is the following:

S =
1

16⇡

Z

d4x
p�g

⇥

R � 2gµ⌫',µ',⌫ � ⇠ R '2
⇤

+ Sperfect fluid , (4.4)

where ⇠ is the conformal coupling parameter. For ⇠ = 1/12 the scalar field equations
are invariant under conformal transformations (gµ⌫ ! �2gµ⌫ , ' ! ��1�), whereas for
⇠ = 0 one recovers the usual minimally coupled massless scalar. The theory above can
be obtained as a particular case of the action (2.3) after a field redefinition.

Lima, Matsas and Vanzella showed that the vacuum expectation value of
nonminimally coupled scalar fields can grow exponentially in relativistic stars [134].
At the classical level, this quantum instability can be interpreted in terms of the

[Pani+EB,	  1405.4547]	  
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Figure 6.3. Constraints in the ↵0-�0 plane of T1(↵0,�0) scalar-tensor theories by present
experiments (Cassini, PSR J1738+0333, PSR J0348+0432) and selected future tests (dashed curves).
The black dashed lines show upper limits from two different (hypothetical) pulsar-BH systems, with
Pb = 5 d, e = 0.8 (upper) and Pb = 0.5 d, e = 0.1 (lower), observed with the SKA. The dashed
green line shows the expected upper limits from timing the triple-system pulsar (PSR J0337+1715)
with the SKA. Calculations are based on a stiff equation of state, and therefore conservative. For
negative �0, PSR J0348+0432 is the most constraining system, due to its high mass. The vertical
line at �0 = 0 corresponds to Jordan-Fierz-Brans-Dicke gravity.

the requirement that gravitational excitations propagate with speeds larger than the
speed of light, in order to avoid the production of gravitational Cherenkov radiation
by photons and relativistic particles [263]. Also, in the case of khronometric gravity,
further constraints arise from the requirements that the observed primordial element
abundances match the predictions of Big Bang nucleosynthesis [43, 44, 261]. Note
that Big Bang nucleosynthesis gives much weaker constraints on Einstein-Æther
theory [42,261].

All the above constraints are summarized in Figure 6.4. Also, as discussed in
Section 5.4, competitive constraints can be placed on the coupling parameters by
requiring that the rate of change of binary-pulsar systems matches the observations (as
well as by requiring that isolated pulsars show no anomalous precession, which would
be induced by Lorentz violations) [43,44]. In particular, the purple region in Figure 6.4
is obtained by imposing agreement with the observations of PSR J1141-6545 [674],
PSR J0348+0432 [525], PSR J0737-3039 [675] and PSR J1738+0333 [33,667]. Finally,
we should stress that additional constraints on Lorentz violations in gravity come
from cosmological observations such as the CMB and the large-scale structure,
if a direct coupling between the Lorentz-violating field and the Dark Sector is
introduced [676,677].

[EB+, 1501.07274] 



1)  Could	  scalariza+on	  leave	  imprints	  in	  crustal	  oscilla+ons?	  
No	  -‐	  pulsar	  bounds	  are	  too	  strong	  

2)  Can	  the	  EOS	  dependence	  save	  us?	  
No	  -‐	  too	  mild	  

3)  Can	  anisotropy	  save	  us?	  
Possibly	  so	  -‐	  if	  you	  believe	  in	  anisotropy…	  

4)  Mul+scalariza+on?	  
Work	  in	  progress…	  

Scalariza+on	  is	  alive	  –	  but	  for	  how	  long?	  
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eY2(r), the zero-traction and zero-torque conditions trans-
late into the requirements that eY2(rb) = eY2(rs) = 0. The
same change of variables was used in [8] in the context
of magnetized stars (see also [68]).

Using Eqs. (49) and (50) we can now find the frequen-
cies nt` by applying a shooting method (see e.g. [57]).
Choosing eY1(r) to be normalized to unity, and setting
eY2(r) = 0 at the stellar surface r = R, we integrate
Eqs. (12)-(15), (49) and (50) inwards for a trial value of
! until we reach the crust basis at r = rb, where we must
have eY2(rb) = 0. Depending on whether or not this con-
dition is satisfied, we adjust the trial value of ! until we
find eY2(rb) = 0 within a certain tolerance. In this way
the determination of ! becomes a root finding problem,
which can be solved using (for instance) the bisection
method.

IV. THE OSCILLATION SPECTRA

With our equilibrium NS models and our numerical
framework to deal with crustal perturbations, we are fi-
nally in a position to compute and discuss the spectrum
of torsional oscillation frequencies in scalar-tensor the-
ory. The spectrum depends quite sensitively on the bulk
properties of the star (mass M , radius e

R, crust thickness
� e
R), on the choice of crustal EOS, and on the scalar field

profile in the crust region.
In Fig. 5 we show the torsional oscillation frequencies

for the fundamental mode 0t2 (top panels) and first over-
tone 1t2 (bottom panels) as a function of the mass M for
NS models with all possible combinations of core EOS
(MS0, APR) and crust EOS (DH, KP). We show results
for three di↵erent values of �: � = 0 (GR), � = �4.5
(marginally excluded by binary pulsar observations) and
� = �6 (observationally excluded, but shown nonetheless
to maximize the e↵ects of scalarization). By comparing
the left and right panels we can quantify the influence
of electron screening e↵ects (everything else being the
same): electron screening typically lowers the oscillation
spectra, in agreement with the findings of Ref. [15]. For
stellar models built using EOS MS0 and for the conser-
vative value � = �4.5, modifications from GR occur at
values of M ' 2.0M

�

, close to the largest observed NS
mass [35, 69]. Therefore from now on we will focus on
EOS APR.

Notice that the first overtone is more sensitive to
scalarization than the fundamental mode. This is con-
firmed in Fig. 6, where we show the frequencies of the
0t` and 1t` modes for a fixed stellar mass M = 1.8M

�

as a function of �. Newtonian estimates [67] (see also [7]
for GR with similar conclusion), show that the overtones
scale roughly as ⇡ n/� e

R and are essentially independent
of `, as long as ` is not much larger than n. As shown by
Eq. (25) and in Fig. 3, scalarization decreases the crust
thickness. The shrinking crust thickness compensates for
the reduced e↵ective shear modulus, and the net e↵ect is

FIG. 6. (Color online) Frequencies of the torsional modes in
scalar-tensor theory as a function of � for stellar models with
mass M = 1.8M

�

. Circles and dotted lines correspond to
APR+DH; squares and dashed lines correspond to APR+KP.
In the right panel we plot the mode frequencies 0t` for ` =
2, 3, 4 and 5. In the left panel we show the frequencies of the
first overtone 1t`.

an increase of the oscillation frequencies. Notice also that
in scalar-tensor theory the frequencies of the fundamental
torsional oscillation mode decrease as we decrease � (the
opposite happens in tensor-vector-scalar theory [49]).
In Fig. 7 we address the following question: are un-

certainties in the EOS small enough to allow for tests
of the underlying gravitational theory based on measure-
ments of torsional oscillation frequencies in QPOs? Un-
fortunately, the answer is in the negative. Shaded re-
gions in the plot are bounded by the values of the tor-
sional oscillation frequencies computed using EOS DH
and KP for the crust. One region (bounded by dashed
lines) corresponds to GR, while the other (solid lines) to
scalar-tensor theory. These regions are meant to roughly
quantify the EOS uncertainty within each theory. Hori-
zontal lines in the left panels mark the QPO frequency
of 28 Hz observed in SGR 1900+14 [2], and identified
with the 0t2 mode. The plots show that for a theory pa-
rameter � = �4.5 (marginally ruled out by binary pul-
sar observations [34]) the predictions of GR and scalar-
tensory theory are indistinguishable within uncertainties
in the crustal EOS. The bottom-left panel shows that,
in principle, a scalar-tensor theory with � = �6.0 could
be distinguished from GR if we were to observe QPOs
with frequencies smaller than 24 Hz in magnetars with
M & 1.6M

�

. However, such a large value of � is al-
ready excluded by binary pulsar experiments. The right
panel carries out a similar analysis for the first overtone
1t`. The horizontal line indicates the QPO frequency of
626.46± 0.02 Hz detected in SGR 1806-20 [3], and iden-
tified with the first overtone 1t`. The conclusions are
similar: for � = �4.5, the predictions of GR and scalar-
tensory theory are indistinguishable within uncertainties

[Schumaker-Thorne, MNRAS 253, 457 (1983); Silva+, arXiv:1410.2511] 

Why?	  
Possible	  smoking	  gun	  
for	  scalariza+on	  if	  
crustal	  quakes	  are	  
associated	  with	  
QPOs	  in	  magnetars	  
	  
	  
Leg:	  fundamental	  
Right:	  overtone	  
	  
	  
Circles:	  APR+DH	  
Squares:	  APR+KP	  
DH	  (Douchin-‐Haensel),	  KP	  (Kobyakov-‐Pethick):	  different	  crustal	  EOS	  	  
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FIG. 7. (Color online) This plot compares modifications in torsional oscillation frequencies due to the underlying gravitational
theory with crustal EOS uncertainties for models constructed using EOS APR in the core. Regions bounded by dashed lines
correspond to oscillation frequencies in GR with di↵erent crustal EOSs; regions bounded by solid lines correspond to oscillation
frequencies in scalar-tensor theory with di↵erent crustal EOSs. The degeneracy between modified gravity and crustal EOS is
broken when the two regions do not overlap. Left panels refer to a scalar-tensor theory with � = �4.5, right panels to a theory
with � = �6.0 (a value already excluded by binary pulsar experiments [34]).

in the crustal EOS.
Let us now focus on the fundamental mode 0t2, which

has been identified with QPOs in both SGR 1900+14
(28±0.5 Hz) [2] and SGR 1806-20 (30.4±0.3 Hz) [3]. To
quantify the relative e↵ect of scalarization and electron
screening, assuming the crustal EOS to be known, we
introduce the ratio

⌘ ⌘ |0t2[ST]� 0t2[GR]|
|0t̄2[GR]� 0t2[GR]| , (51)

where 0t2[GR] (0t2[ST]) is the fundamental mode fre-
quency in GR (scalar-tensor theory) ignoring electron
screening, and 0t̄2[GR] is the corresponding frequency in
GR computed by taking into account electron screening.
Electron screening has a larger impact than scalarization
whenever ⌘ < 1.

In Fig. 8 we show ⌘ as a function of the mass M for all
combinations of core and crust EOS considered in this
work. The punchline of this plot is consistent with our
previous findings: the e↵ect of electron screening is al-
ways dominant over scalarization for values of � that are
compatible with current binary pulsar experiments. Un-
realistically large values of � (e.g., � = �6) would be
needed to constrain scalar-tensor theories via torsional
oscillation frequencies.

V. CONCLUSIONS

We studied torsional oscillations in NS crusts in scalar-
tensor theories of gravity allowing for spontaneous scalar-
ization. Working in the Cowling approximation, we
showed that the “master equation” governing torsional

FIG. 8. (Color online) The ratio ⌘ defined in Eq. (51) for all
stellar models considered in this work. Values of ⌘ > 1 mean
that the e↵ect of scalarization is larger than that of electron
screening. This would only be possible for values of � that
are already ruled out by binary pulsar experiments.

oscillations – our Eq. (43) – has the same form as in GR
[6] if we introduce an e↵ective shear modulus µ̃e↵, an
e↵ective wave velocity ṽe↵ and a rescaled frequency !̄.
In general, a smaller e↵ective shear modulus reduces the
oscillation frequencies. However we showed both analyt-
ically and numerically that the NS crust becomes thin-
ner under scalarization, and a thinner crust tends to in-
crease the overtone frequencies. Our numerical calcula-
tions show that the reduced shear modulus is the domi-
nant e↵ect for the fundamental mode, while the change

Bands	  bracket	  uncertain+es	  in	  crustal	  EOS	  
Leg:	  fundamental	  mode,	  right:	  overtone	  
DoRed	  horizontal	  lines:	  measured	  QPOs	  

	  
Red:	  GR	  modes	  as	  a	  func+on	  of	  mass	  	  
Blue:	  ST	  modes	  for	  models	  that	  are 	   	  *	  marginally	  allowed	  (top)	  	  

	   	   	   	   	   	   	   	   	   	   	  *	  excluded	  (boRom)	  	  
	   [Silva+, 1410.2511] 
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solved with a standard shooting method to find the critical value of the central density
✏̃c for which the above conditions are satisfied, given fixed values of � and �H (or �BL).
The solution is some

✏̃i = ✏̃i(�), (38)

where ✏̃i is the smallest critical density at which scalarization can occur for the given
�. The largest critical density producing scalarization can be similarly obtained by
looking for zero-energy bound state solutions to find some

✏̃f = ✏̃f(�). (39)

It can be shown that in these two regimes (i.e., at the starting and ending points of
the scalarization regime) the derivative of  0(r ! 1) with respect to ✏̃c has opposite
signs:

@

@✏̃c
 0(r ! 1)

⇢
< 0 for ✏̃c = ✏̃i,

> 0 for ✏̃c = ✏̃f .
(40)

Figure 6. Critical � for scalarization as a function of the central density
(left panel) and of the stellar compactness (right panel) for nonrotating NS
models constructed using di↵erent nuclear-physics based EoSs, in the absence
of anisotropy.

As a warm-up, in Figure 6 we compute the scalarization threshold for nonrotating
isotropic stars with several nuclear-physics based EoSs. The original references for the
subset of EoSs used here can be found in [55] (the one exception is SLy4: cf. [56]). The
EoSs are sorted by sti↵ness, with APR EoS being the sti↵est and G EoS the softest
in our catalog. As a trend, for sti↵er EoSs scalarization occurs at lower values of the
central densities and at higher values of the compactness. The most remarkable fact
is that the value � = �max above which scalarization cannot occur is very narrow: it
ranges from �max = �4.3462 for APR EoS to �max = �4.3405 for F EoS [57]. This is
consistent with Harada’s study based on catastrophe theory, that predicts a threshold
value �max ' �4.35 (horizontal line in the figure) in the absence of anisotropy [37].

In Table 1 we compare the values for ✏̃i and ✏̃f computed using (i) the linearized
method described in this Section, and (ii) the full nonlinear set of equations for
anisotropic models constructed using the APR EoS. The results agree remarkably
well, showing that the onset of scalarization can be analyzed to an excellent degree

[Silva+, 1411.6286] 

Dependence	  of	  β	  on	  EOS	  is	  too	  mild	  	  
for	  ordinary	  models	  of	  high-‐density	  nuclear	  maher 



A	  (not	  so	  exo+c?)	  way	  out:	  anisotropy	  
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(see Appendix A for details). As A(') ! 1 and �̃ ! 0 we recover Hartle’s result [46],
and in the isotropic limit �̃ ! 0 we match the result of [49]. The numerical values of
I obtained with (31) and (32) are in excellent agreement.

For each stellar model we also calculate the baryonic mass M̃b, defined as [24]

M̃b ⌘ 4⇡m̃b

Z R⇤

0

ñ A

3(')
r

2

p
1� 2µ/r

dr, (33)

where m̃b = 1.66 ⇥ 10�24 g is the atomic mass unit and ñ is the baryonic number
density.

Figure 1. Mass-radius relation (top panels) and dimensionless compactness
G⇤M/Rc2 as a function of the central density (bottom panels) for anisotropic
stars in GR using EoS APR. In the left panels we use the quasi-local model of
[13]; in the right panels, the Bowers-Liang model [12]. Di↵erent curves correspond
to increasing �H (or �BL) in increments of 0.5 between �2 (top) and 2 (bottom).

λ	  =	  degree	  of	  anisotropy	  
Two	  models:	  Horvat+	  (le^),	  Bowers-‐Liang	  (right)	  
λ<0:	  (tangen8al	  pressure)>(radial	  pressure) 

[Silva+, 1411.6286] 

[Adam+, 1503.03095; Kamiak-Broderick-Afshordi, 1503.03898] 



Anisotropy	  and	  scalariza+on	  threshold	  
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�

� = �4.35

Isotropic
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EoS APR

0.15 0.20 0.25 0.30

G⇤M/(R̃c2)

�BL = +1.0

�BL = 0.0

�BL = �1.0

�BL = �2.0

EoS APR

Anisotropic (Bowers-Liang)

λ  =	  degree	  of	  anisotropy	  
Aside:	  in	  the	  limit	  λ=-‐2π	  the	  Bowers-‐Liang	  model	  	  

for	  constant-‐density	  stars	  has	  R=2M	  –	  and	  the	  low-‐order	  	  
mul8pole	  moments	  also	  tend	  to	  those	  of	  Kerr!	  

[Yagi-Yunes+, 1502.04131] 
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Figure 4. Same as Figure 3, but for the Bowers-Liang anisotropy model [15].

scalarization the scalar field must be small, so we can neglect its backreaction on the
geometry and look for bound states of the scalar field by dropping terms quadratic
in the field [27, 42]. Here we study general conditions for the existence of bound
states in the linearized regime, and we show that (as expected based on the previous
argument) the linearized theory does indeed give results in excellent agreement with
the full, nonlinear calculation.

Redefining the scalar field as '(t, r) = r

�1 (r)e�i⌫t and neglecting terms O('2),
Eq. (4) can be written as a Schrödinger-like equation:

d

2 

dx

2
+
⇥
⌫

2 � Ve↵(x)
⇤
 = 0, (34)

where the tortoise radial coordinate x is defined by dx ⌘ dr e

��
/

p
1� 2µ/r. The

Anisotropy	  boosts	  effects	  of	  scalariza+on	  
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In Section 3 we derive the equations for stationary, spherically symmetric relativistic
stars, and perform numerical integrations of these equations. In Section 4 we derived
the 3 + 1 decomposition of the TMS field equations, which can be used to perform
fully non-linear integrations [Leonardo: If we do not use the 3 + 1 decomposition, this
section may go to an appendix.] . In Section 5 we draw our conclusions.

2. Tensor-multi-scalar theories: action, field equations, scalar-matter
couplings, and symmetries

[Leonardo: Minor modifications in this section]

2.1. Units, conventions, and notation

Throughout the paper, relativistic units with ~ = c = 1 are employed; the gravitational
constant measured in a Cavendish experiment is denoted by G = (8⇡M

2

pl

)

�1, while
the “bare” gravitational constant appearing in the action is denoted by G

?

. Indices on
space-time tensors are denoted by Greek letters and take values 0, . . . , 3, and space-
time coordinates are denoted by x

µ. The Lorentzian space-time metric is taken to have
signature (�,+,+,+), and its components are denoted by g

µ⌫

(x). The conventions
for the Riemann curvature tensor and its contractions, for symmetrization and anti-
symmetrization of tensors, are those of Misner, Thorne, and Wheeler [24].

The N -tuple of scalar fields �

A

(x) = (�

1

(x), . . . ,�

N

(x)) takes values in a
coordinate patch of an N -dimensional Riemannian target-space manifold. Indices on
target-space tensors are denoted by capital Roman letters, and take values 1, 2, . . . , N .
Components of the target-space Riemannian metric are denoted by �

AB

(�), and the
associated Christoffel symbols are denoted by �

C

AB

(�). The target-space Riemann
curvature tensor is denoted by RA

BCD

(�). If the target space has a Hermitian
structure, then indices on complexified tensors are denoted by lower-case Roman
letters, and take values 1, 2, . . . , N/2. Holomorphic coordinates are denoted by
('

a

, '̄

a

), and the components of the Hermitian metric in these coordinates are denoted
by �

āb

(', '̄).

2.2. Action and field equations for N real scalars

We consider a gravitational theory with metric tensor g
µ⌫

, and scalar fields �1

, . . . ,�

N

which take values in a coordinate patch of an N -dimensional target-space manifold.
We assume that all non-gravitational fields, denoted collectively by  , couple only to
the Jordan-frame metric g̃

µ⌫

= A

2

(�)g

µ⌫

, so that the matter action has the functional
form S

m

[ ; g̃

µ⌫

]. This assumption guarantees that the Weak Equivalence Principle
(WEP), which has been experimentally verified with great accuracy [25], will hold.

The most general⇤ action which is invariant under space-time and target-space
diffeomorphisms, and has at most two space-time derivatives, can be written in the
form [12] [Paolo: Can we use V instead of B through the manuscript?]

S =

1

4⇡G

?

Z
d

4

x

p�g

 
R

4

� 1

2

g

µ⌫

�

AB

(�)@

µ

�

A

@

⌫

�

B �B(�)

!

+ S

m

[A

2

(�)g

µ⌫

; ] , (2.1)

⇤ Up to boundary terms and field redefinitions
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The complexified field equations are:

R

µ⌫

= 4�

āb

(', '̄)r
(µ

'̄

ar
⌫)

'

b

+ 2B(', '̄)g

µ⌫

+ 8⇡G

?

✓
T

µ⌫

� 1

2

Tg

µ⌫

◆
, (2.10)

⇤'

a

= � �

a

bc

(', '̄)g

µ⌫r
µ

'

br
⌫

'

c � 2�

a

¯

bc

(', '̄)g

µ⌫r
µ

'̄

br
⌫

'

c

+ �

a

¯

b

(', '̄)

@B(', '̄)

@'̄

b

� 4⇡G

?

�

a

¯

b

(', '̄)

@ logA(', '̄)

@'̄

b

T . (2.11)

Note that for Kähler manifolds (and in particular one-complex-dimensional manifolds),

�

a

¯

bc

(', '̄) = 0 , �

a

bc

(', '̄) = �

a

¯

d

(', '̄)

@�

c

¯

d

(', '̄)

@'

b

, (2.12)

so the scalar field equation simplifies.

2.4. A single-complex-scalar model with maximally-symmetric target space

The simplest extension of a scalar-tensor theory with a single (real) scalar field, is the
case of two (real) scalar fields or, equivalently, the case of a single complex scalar, '.
From now on, we will focus on this case since, as we will show, it is well representative
for the new phenomenology arising in TMS theories relative to the case of a single
real scalar. In this case, N = 2, and the action (2.9) reduces to

S =

1

4⇡G

?

Z
d

4

x

p�g

 
R

4

� g

µ⌫

�(', '̄)r
µ

'̄r
⌫

'�B(', '̄)

!

+ S

m

[A

2

(', '̄)g

µ⌫

; ] , (2.13)
and the field equations are

R

µ⌫

= 4�(', '̄)r
(µ

'̄r
⌫)

'+ 2B(', '̄)g

µ⌫

+ 8⇡G

?

✓
T

µ⌫

� 1

2

Tg

µ⌫

◆
, (2.14)

⇤' = � @ log �(', '̄)

@'

g

µ⌫r
µ

'r
⌫

'

+ �

�1

(', '̄)

@B(', '̄)

@'̄

� 4⇡G

?

�

�1

(', '̄)

@ logA(', '̄)

@'̄

T . (2.15)

We also assume that the potential vanishes, B(', '̄) = 0, and that the target space is
maximally symmetric. Therefore, upon stereographic projection and field redefinition
(see Appendix A) the target-space metric can be written as

�(', '̄) =

1

2

⇣
1 +

'̄'

4r2

⌘�2

, (2.16)

where r is the radius of curvature of the target-space geometry: for spherical geometry
r2 > 0, for hyperbolic geometry r2 < 0, for flat geometry r = 0.

With the above choices, the field equations become

R

µ⌫

= 2

⇣
1 +

'̄'

4r2

⌘�2

@

(µ

'̄@

⌫)

'+ 8⇡G⇤

✓
T

µ⌫

� 1

2

Tg

µ⌫

◆
(2.17)

⇤'�
✓

2'̄

'̄'+ 4r2

◆
g

µ⌫

@

µ

'@

⌫

'+ 8⇡G⇤

⇣
1 +

'̄'

4r2

⌘
2

@ logA(', '̄)

@'̄

T = 0 . (2.18)

The function A(', '̄), whose derivative enters into the field equations, determines
the scalar-matter coupling. [Paolo: Moved here from below and extended. Please check
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The complexified field equations are:

R

µ⌫

= 4�

āb

(', '̄)r
(µ

'̄

ar
⌫)

'

b

+ 2B(', '̄)g

µ⌫

+ 8⇡G

?

✓
T

µ⌫

� 1

2

Tg

µ⌫

◆
, (2.10)

⇤'

a

= � �

a

bc

(', '̄)g

µ⌫r
µ

'

br
⌫

'

c � 2�

a

¯

bc

(', '̄)g

µ⌫r
µ

'̄

br
⌫

'

c

+ �

a

¯

b

(', '̄)

@B(', '̄)

@'̄

b

� 4⇡G

?

�

a

¯

b

(', '̄)

@ logA(', '̄)

@'̄

b

T . (2.11)

Note that for Kähler manifolds (and in particular one-complex-dimensional manifolds),

�

a

¯

bc

(', '̄) = 0 , �

a

bc

(', '̄) = �

a

¯

d

(', '̄)

@�

c

¯

d

(', '̄)

@'

b

, (2.12)

so the scalar field equation simplifies.

2.4. A single-complex-scalar model with maximally-symmetric target space

The simplest extension of a scalar-tensor theory with a single (real) scalar field, is the
case of two (real) scalar fields or, equivalently, the case of a single complex scalar, '.
From now on, we will focus on this case since, as we will show, it is well representative
for the new phenomenology arising in TMS theories relative to the case of a single
real scalar. In this case, N = 2, and the action (2.9) reduces to

S =

1

4⇡G

?

Z
d

4

x

p�g

 
R

4

� g

µ⌫

�(', '̄)r
µ

'̄r
⌫

'�B(', '̄)

!

+ S

m

[A

2

(', '̄)g

µ⌫

; ] , (2.13)
and the field equations are

R

µ⌫

= 4�(', '̄)r
(µ

'̄r
⌫)

'+ 2B(', '̄)g

µ⌫

+ 8⇡G

?

✓
T

µ⌫

� 1

2

Tg

µ⌫

◆
, (2.14)

⇤' = � @ log �(', '̄)

@'

g

µ⌫r
µ

'r
⌫

'

+ �

�1

(', '̄)

@B(', '̄)

@'̄

� 4⇡G

?

�

�1

(', '̄)

@ logA(', '̄)

@'̄

T . (2.15)

We also assume that the potential vanishes, B(', '̄) = 0, and that the target space is
maximally symmetric. Therefore, upon stereographic projection and field redefinition
(see Appendix A) the target-space metric can be written as

�(', '̄) =

1

2

⇣
1 +

'̄'

4r2

⌘�2

, (2.16)

where r is the radius of curvature of the target-space geometry: for spherical geometry
r2 > 0, for hyperbolic geometry r2 < 0, for flat geometry r = 0.

With the above choices, the field equations become

R

µ⌫

= 2

⇣
1 +

'̄'

4r2

⌘�2

@

(µ

'̄@

⌫)

'+ 8⇡G⇤

✓
T

µ⌫

� 1

2

Tg

µ⌫

◆
(2.17)

⇤'�
✓

2'̄

'̄'+ 4r2

◆
g

µ⌫

@

µ

'@

⌫

'+ 8⇡G⇤

⇣
1 +

'̄'

4r2

⌘
2

@ logA(', '̄)

@'̄

T = 0 . (2.18)

The function A(', '̄), whose derivative enters into the field equations, determines
the scalar-matter coupling. [Paolo: Moved here from below and extended. Please check
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this part carefully!] [Uli: Checked derivation of Eqs. (2.19)-(2.21) from (2.14)-(2.15),
(2.19). They are correct. The only thing I am a bit uncomfortable with is writing the
derivative with respect to a complex variable as @/@'. Isn’t the derivative in a plane
potentially path dependent?] [Leonardo: It’s not path dependent, because ' and '̄ are
formally treated as independent variables.] It is natural to expand it in a series about
' = 0:

logA(', '̄) = ↵

⇤
'+ ↵̄

⇤
'̄+

1

2

�

0

''̄+

1

4

�

⇤
1

'

2

+

1

4

¯

�

⇤
1

'̄

2

+ . . . , (2.19)

where �
0

is real and ↵

⇤ and �

⇤
1

are, in general, complex. Now redefine �⇤
1

= �

1

e

i✓1 ,
where �

1

is non-negative and ✓

1

2 [0, 2⇡). Then, after definining ↵⇤
= ↵e

i✓1/2 and a
new field  = 'e

i✓1/2, the field equations become

⇤ =

✓
2

¯

 

¯

  + 4r2

◆
g

µ⌫

@

µ

 @

⌫

 � 8⇡G⇤

✓
1 +

¯

  

4r2

◆
2

@ logA( ,

¯

 )

@

¯

 

T , (2.20)

R

µ⌫

= 2

✓
1 +

¯

  

4r2

◆�2

@

(µ

¯

 @

⌫)

 + 8⇡G⇤

✓
T

µ⌫

� 1

2

Tg

µ⌫

◆
, (2.21)

where
logA( ,

¯

 ) = ↵ + ↵̄

¯

 +

1

2

�

0

 

¯

 +

1

4

�

1

 

2

+

1

4

�

1

¯

 

2

+ . . . (2.22)

Therefore, any solution of the original theory (formulated with respect to ' and
complex coupling coefficients ↵⇤ and �

⇤
1

) can be obtained by considering a theory
where we consider the field  , a non-negative �

1

= |�⇤
1

| and a generically complex ↵.
The solution for the theory corresponding to the conformal factor (2.19) is then given
by a simple rotation, ' =  exp

�� i

2

✓

1

�
.

The model just described represents the simplest (yet quite comprehensive)
generalization of the model of single scalar-tensor theory investigated in Refs. [26].

Because the quantity ↵↵̄ ⌘ Re[↵]

2

+Im[↵]

2 is strongly constrained by observations
(cf. Appendix B), from now on we will simply set ↵ = 0 and focus on the terms
proportional to �

0

and �
1

. In this case the conformal coupling reduces to

logA( ,

¯

 ) =

1

2

�

0

 

¯

 +

1

4

�

1

 

2

+

1

4

�

1

¯

 

2

, (2.23)

where we neglected higher-order terms in the scalar field.
Finally, the field equations can be also written in terms of two real scalars. To

this purpose, let us split the field  into real and imaginary parts as  ⌘ Z + iW . In
terms of these fields, the conformal factor (2.23) reads:

logA( ,

¯

 ) =

1

2

⇥
(�

0

+ �

1

)Z

2

+ (�

0

� �

1

)W

2

⇤
. (2.24)

2.5. Linearized field equations and scalarization

The field equations acquire a particularly simple form when linearized to first order in
Z and W . [Leonardo: Removed the words “or, equivalently, in the limit r! 1 in which
the target-space geometry becomes flat.” at the end of the sentence above: I agree with
Uli, in that limit there is still a term quadratic in the scalar field in Einstein’s equations]
[Uli: Hmmm, I am not convinced these two limits are equivalent. If the scalar fields have
a large amplitude, they will appear as strong (non-linear) source terms in the Einstein or
matter equations irrespectively of a flat or non-flat target metric. Then the limit of small
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The function A(', '̄), whose derivative enters into the field equations, determines
the scalar-matter coupling through Eq. (2.19). Without loss of generality we assume
that far away from the source the field vanishes, i.e. that the asymptotic value of the
scalar field is '1 = 0. We then expand the function logA in a series about ' = 0:

logA(', '̄) = ↵⇤'+ ↵̄⇤'̄+

1

2

�0''̄+

1

4

�⇤
1'

2
+

1

4

¯�⇤
1 '̄

2
+ . . . , (2.20)

where �0 is real, while ↵⇤ and �⇤
1 are in general complex numbers⇤. Although the five

real parameters Re(↵⇤
), Im(↵⇤

),�0,Re(�⇤
1), Im(�⇤

1) are defined in terms of a specific
target-space coordinate system, the four real quantities (|↵⇤|,�0, |�⇤

1 |, arg↵⇤� 1
2 arg �

⇤
1)

may be expressed solely in terms of target-space scalar quantities, and thus have an
invariant geometric meaning†. The remaining real parameter is an unmeasurable
overall complex phase.

To make this explicit, redefine �⇤
1 ⌘ �1ei✓, where ✓ is chosen such that �1 is

real. Then, after defining ↵⇤ ⌘ ↵ei✓/2 and a new field  ⌘ 'ei✓/2, the field equations
become

Rµ⌫ = 2

✓
1 +

¯  

4r2

◆�2

@(µ ¯ @⌫) + 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.21)

⇤ =

✓
2

¯ 
¯  + 4r2

◆
gµ⌫@µ @⌫ � 4⇡G?

✓
1 +

¯  

4r2

◆
̄( , ¯ )T , (2.22)

where the function  is defined in Eq. (2.19) and

logA( , ¯ ) = ↵ + ↵̄ ¯ +

1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2
+ . . . . (2.23)

Therefore, any solution of the original theory (formulated with respect to ' and
complex coupling coefficients ↵⇤ and �⇤

1) can be obtained by considering a theory
where we consider the field  , a real-valued �1 and a generically complex ↵. The
solution for the theory corresponding to the conformal factor (2.20) is then given by
a simple rotation, ' =  exp (�i✓/ 2).

The model just described represents the simplest, yet quite comprehensive,
generalization of the model of single ST theory investigated originally in Ref. [23].

Note that the quantity |↵|2 ⌘ ↵↵̄ ⌘ Re[↵]2 + Im[↵]2 is strongly constrained by
observations (cf. Appendix B), similarly to the single-scalar case. When ↵ = 0, the
conformal coupling reduces to

logA( , ¯ ) =
1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2 , (2.24)

where we neglected higher-order terms in the scalar field. However, in TMS theories
↵ is a complex quantity and its argument, arg↵, is completely unconstrained in the
weak-field regime. In Section 3.2.2 we will show that compact stars in theories with
↵ = 0 and ↵ 6= 0 are rather different.

⇤ At the onset of spontaneous scalarization |'| ⌧ 1, and we can always expand the conformal factor
as in Eq. (2.20). For scalarized solutions the field amplitude may be large, the higher-order terms
in the expansion may not be negligible, and the expansion (2.20) should be considered as an ansatz
for the conformal factor. For a general functional form of the conformal factor, the series expansion
used here (and in Ref. [23]) can only provide a qualitative description of the scalarized solution.

† The eigenvalues of the quadratic form in (2.20), given by �0 ± |�⇤
1 |, are target-space scalars. The

phase difference arg↵⇤� 1
2 arg �⇤

1 arises when this quadratic form is contracted with ↵⇤, see Eq. (B.6).
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Figure 3.4. Symmetry breaking of the space of solutions. When �1 6= 0, the O(2)-symmetric
solution-space analyzed in the previous section (cf. Fig. 3.1) collapses down to a (Z2⇥Z2)-symmetric
solution-space. This property of the theory is here illustrated for stellar models with the same equation
of state and central energy density as in Fig. 3.1, �0 = �5.0 and r = 5.0.

scalarized models exist if �0 + �1 . �4.35 when Re[ ] 6= 0, or �0 � �1 . �4.35 when
instead Im[ ] 6= 0. We have checked this expectation by calculating models for the
parameter sets (i) 1/r = 0, �1 = 0 and (ii) 1/r = 2, �1 = 0. For each of these cases, we
have varied the central density from 10

�5
km

�2 to 0.0015 km

�2 in steps of 10�5
km

�2.
We applied our shooting algorithm for a scalar field amplitude | (r = 0)| 2 [0, 1] in
steps of 0.1, choosing discrete values of the complex phase ✓ = 0, ⇡/2, ⇡, 3⇡/2, and
varying �0 2 [�20, 3] in steps of 0.01. For all values of the central density and �0,
the shooting method identifies one GR solution model with vanishing scalar charge.
For sufficiently negative �0, we additionally identify scalarized models. Among these
models we then identify for a given value of �0 the scalarized model with the lowest
baryon mass, and thus generate a scalarization plot analogous to Fig. 2 in [46] for ST
theory with a single scalar field. The result is shown in Fig. 3.5. The small difference
between the curves for different curvature radius r likely arises from the small but finite
amplitude of the scalar field appearing in the lowest-mass scalarized binaries, which
is a byproduct of finite discretization in the mass parameter space. In the continuum
limit of infinitesimal amplitudes of the scalar field in scalarized models, we expect this
difference to disappear completely and the dotted and dashed curves to overlap. This
is indeed supported by an analytic calculation.⇤ These results confirm the prediction
of Eq. (C.5) and agree (qualitatively and quantitatively) with the single-scalar case
shown in Fig. 2 of [46].

Indeed, in this case the analogy with the single-scalar case can be made more
formal. Let us consider without loss of generality the subspace of the solution space

⇤ This calculation uses Riemann-normal coordinates at '1 in target space, and finds that target-
space-curvature terms appear in the field equations at third order in the scalar-amplitude expansion.
Details will be published elsewhere [51].

α=0:	  symmetry	  breaking	  
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The field equations can be also written in terms of two real scalars. For this
purpose, let us split the field  into real and imaginary parts:  ⌘ Re[ ] + i Im[ ].
Then the conformal factor (2.24), again in the ↵ = ↵̄ = 0 case, reads:

logA( , ¯ ) =
1

2

⇥
(�0 + �1)Re[ ]

2
+ (�0 � �1)Im[ ]2

⇤
. (2.25)

The structure of this TMS theory is ultimately determined by three real parameters:
�0+�1, �0��1 and the target-space curvature defined by r2. When ↵ 6= 0, two further
parameters (|↵| and arg↵) are necessary to define the theory.

3. Stellar structure in tensor-multi-scalar theories

In this section we consider the structure of relativistic stars in the context of the TMS
theory introduced in Section 2.4. We first derive the equations of structure for a slowly
rotating star in the Hartle-Thorne formalism [49, 50] (Section 3.1), then we integrate
these equations and discuss some properties of scalarized solutions in increasingly
complex scenarios (Section 3.2).

3.1. Equations of hydrostatic equilibrium

We describe a stationary, axisymmetric star, composed by a perfect fluid, slowly
rotating with angular velocity ⌦, using coordinates xµ

= (t, r, ✓,�) and the line element

gµ⌫dx
µdx⌫

= �e⌫(r)dt2 +
dr2

1� 2µ(r)
+ r2(d✓2 + sin

2 ✓d�2)

+ 2 [!(r)� ⌦] r2 sin2 ✓dtd�. (3.1)

where we neglect terms of order ⇠ ⌦

2 and higher in the metric and in the
hydrodynamical quantities. The variable µ(r) is related to the more familiar mass
function m(r) by µ = m/r. The energy-momentum tensor of the perfect fluid takes
the usual form

Tµ⌫
= A4

( , ¯ ) [(⇢+ P )uµu⌫
+ Pgµ⌫ ] , (3.2)

where ⇢, P , and ũµ
= A�1

( , ¯ )uµ are the mass-energy density, pressure, and four-
velocity of the fluid, respectively, and

uµ
= e�⌫/2

(1, 0, 0, ⌦) . (3.3)
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3.2.1. The O(2)-symmetric theory In the absence of a scalar potential, the
gravitational part of the action (2.1) is invariant under the target-space isometry group
G. For our simple two-real-scalar model with maximally symmetric target space, G is
the orthogonal group O(3) in the case of spherical geometry, the indefinite orthogonal
group O(2, 1) in the case of hyperbolic geometry, and the inhomogeneous orthogonal
group IO(2) = R

2
oO(2) in the case of flat geometry.

When scalar-matter couplings are introduced, the action is no longer invariant
under all of G, but only under some subgroup H < G. As a first example, let us
consider the particular case in which �1 = ↵ = 0. In this case the conformal factor
A( , ¯ ) given in Eq. (2.24) reduces to

A( , ¯ ) = exp

✓
1

2

�0 ¯ 

◆
, (3.18)

and is obviously invariant under rotations in the complex plane, ( !  ei✓) and
complex conjugation ( ! ¯ ). Therefore, H = O(2). Note that the boundary
condition  1 = 0 is H-invariant. We refer to this special case as the O(2)-symmetric
TMS theory. In this theory, a GR stellar configuration with  ⌘ 0 is always a solution
that is O(2)-invariant.

We now construct scalarized solutions, which spontaneously break the O(2)

symmetry. They depend on the two real parameters (�0 and r2) of this theory, as
well as the central baryon density nB . The O(2)–symmetric character of the scalarized
solution space is exhibited in Fig. 3.1, where we show that, for given values of r and nB ,
there exists an infinite number of scalarized solutions characterized by a different value
of the complex field  0 at the center of the star. The different values of the scalar field
are related by a phase rotation, and the masses and radii of neutron star models along
each of the circles shown in Fig. 3.1 are identical. The target-space curvature r has the
effect of suppressing (r2 < 0) or increasing (r2 > 0) the value of | 0|, and consequently
of the scalar charge Q. Therefore a spherical target space (r2 > 0) produces stronger
scalarization effects in the mass-radius relations with respect to the case of a flat
target-space metric, as illustrated in Fig. 3.2. On the other hand, a hyperbolic target
space (r2 < 0) tends to reduce the effects of spontaneous scalarization. This can be
intuitively, if not rigorously, understood by a glance at Eqs. (2.18) and (2.19): the
curvature term plays the role of an “effective (field-dependent) gravitational constant”
which is either larger or smaller than the “bare” gravitational constant depending on
whether r2 > 0 or r2 < 0. In both cases, as r ! 1 the solution reduces (modulo a
trivial phase rotation) to that of a ST theory with a single real scalar field  and scalar-
matter coupling A( ) = exp

�
1
2�0 

2
�
. We remark that due to the O(2) symmetry,

all solutions of this theory are equivalent to solutions with Im[ ] = 0; as discussed in
Section 3.2.2 below, these are effectively – modulo a field redefinition – solutions of a
single-scalar theory.

Finally, in Fig. 3.3 we illustrate the radial profiles of the mass function m, metric
potential ⌫, mass-energy density ⇢ and scalar field  for scalarized stellar models with
fixed baryonic mass MB = 1.70 M� in theories with �0 = �5.0 and r2 = ±1/4.

3.2.2. The full TMS theory We now turn our attention to the existence of scalarized
stellar models in the theory defined by Eq. (2.23), which depends on three real
parameters (�0, �1 and r2) and the complex constant ↵. When ↵ = 0 and �1 6= 0,
this theory is invariant under the symmetry group Z2 ⇥ Z2 generated by conjugation

Tensor-multi-scalar theories 9

The function A(', '̄), whose derivative enters into the field equations, determines
the scalar-matter coupling through Eq. (2.19). Without loss of generality we assume
that far away from the source the field vanishes, i.e. that the asymptotic value of the
scalar field is '1 = 0. We then expand the function logA in a series about ' = 0:

logA(', '̄) = ↵⇤'+ ↵̄⇤'̄+

1

2

�0''̄+

1

4

�⇤
1'

2
+

1

4

¯�⇤
1 '̄

2
+ . . . , (2.20)

where �0 is real, while ↵⇤ and �⇤
1 are in general complex numbers⇤. Although the five

real parameters Re(↵⇤
), Im(↵⇤

),�0,Re(�⇤
1), Im(�⇤

1) are defined in terms of a specific
target-space coordinate system, the four real quantities (|↵⇤|,�0, |�⇤

1 |, arg↵⇤� 1
2 arg �

⇤
1)

may be expressed solely in terms of target-space scalar quantities, and thus have an
invariant geometric meaning†. The remaining real parameter is an unmeasurable
overall complex phase.

To make this explicit, redefine �⇤
1 ⌘ �1ei✓, where ✓ is chosen such that �1 is

real. Then, after defining ↵⇤ ⌘ ↵ei✓/2 and a new field  ⌘ 'ei✓/2, the field equations
become

Rµ⌫ = 2

✓
1 +

¯  

4r2

◆�2

@(µ ¯ @⌫) + 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.21)

⇤ =

✓
2

¯ 
¯  + 4r2

◆
gµ⌫@µ @⌫ � 4⇡G?

✓
1 +

¯  

4r2

◆
̄( , ¯ )T , (2.22)

where the function  is defined in Eq. (2.19) and

logA( , ¯ ) = ↵ + ↵̄ ¯ +

1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2
+ . . . . (2.23)

Therefore, any solution of the original theory (formulated with respect to ' and
complex coupling coefficients ↵⇤ and �⇤

1) can be obtained by considering a theory
where we consider the field  , a real-valued �1 and a generically complex ↵. The
solution for the theory corresponding to the conformal factor (2.20) is then given by
a simple rotation, ' =  exp (�i✓/ 2).

The model just described represents the simplest, yet quite comprehensive,
generalization of the model of single ST theory investigated originally in Ref. [23].

Note that the quantity |↵|2 ⌘ ↵↵̄ ⌘ Re[↵]2 + Im[↵]2 is strongly constrained by
observations (cf. Appendix B), similarly to the single-scalar case. When ↵ = 0, the
conformal coupling reduces to

logA( , ¯ ) =
1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2 , (2.24)

where we neglected higher-order terms in the scalar field. However, in TMS theories
↵ is a complex quantity and its argument, arg↵, is completely unconstrained in the
weak-field regime. In Section 3.2.2 we will show that compact stars in theories with
↵ = 0 and ↵ 6= 0 are rather different.

⇤ At the onset of spontaneous scalarization |'| ⌧ 1, and we can always expand the conformal factor
as in Eq. (2.20). For scalarized solutions the field amplitude may be large, the higher-order terms
in the expansion may not be negligible, and the expansion (2.20) should be considered as an ansatz
for the conformal factor. For a general functional form of the conformal factor, the series expansion
used here (and in Ref. [23]) can only provide a qualitative description of the scalarized solution.

† The eigenvalues of the quadratic form in (2.20), given by �0 ± |�⇤
1 |, are target-space scalars. The

phase difference arg↵⇤� 1
2 arg �⇤

1 arises when this quadratic form is contracted with ↵⇤, see Eq. (B.6).
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Figure 3.5. Minimal baryonic mass of scalarized models. The baryon mass of scalarized solutions at
the onset of scalarization as a function of (i) �0 + �1 for models where Re[ ] is non-zero (left panel)
and (ii) �0 � �1 for models where Im[ ] is non-zero (right panel). Each panel contains 6 curves,
corresponding to the three values of �1 at fixed r = 1 (dashed curves) and the same three values of
�1 at r = 1/2 (dotted curves). The three dashed curves and the three dotted curves, respectively, are
indistinguishable in the plot and the two families of dashed and dotted curves are only distinguishable
in the inset, where we zoom into a smaller region. In both panels, the vertical long-dashed curve
denotes the value �0±�1 = �4.35 above which we no longer identify scalarized models, in agreement
with Eq. (C.5). From Eq. (2.25) it is clear that the natural parameters are �0 +�1 and �0 ��1 when
the theory is written in terms of the real and imaginary part of  , respectively.

in which the scalar field is real, i.e. Z = Re[ ] 6= 0, W = Im[ ] = 0. The kinetic term
can be put in the canonical form by a scalar field redefinition, i.e.

K = �1

2

✓
1 +

Z2

4r2

◆�2

@µZ@
µZ = �1

2

@µ ˜Z@µ ˜Z , (3.19)

where the two fields are related by Z = 2r tan
⇣

Z̃
2r

⌘
, and �⇡r < ˜Z < ⇡r. For |Z| ⌧ r

we have

˜Z = Z � Z3

12r2
+O(Z5

) , Z =

˜Z +

˜Z3

12r2
+O(

˜Z5
) . (3.20)

Replacing this Taylor expansion in the conformal factor (2.24) we see that
the parameters �0,�1 remain the same. In particular, we obtain A(

˜Z) =

exp

h
(�0 + �1) ˜Z2/2

i
(plus higher-order terms), i.e., the coupling function coincides

with that of a single-scalar theory with coupling constant � = �0 + �1. Thus, as long
as |Z| ⌧ r, the theory with ↵ = 0 is equivalent to a ST theory with one scalar and
coupling � = �0 + �1 (or � = �0 � �1, in which case only W = Im[ ] scalarizes).
Clearly, this proof also includes the limit r ! 1, where the solutions reduce exactly
to those of a single-scalar theory with the identification � ⌘ �0 + �1.

When the condition |Z| ⌧ r is not fulfilled, the theory is still equivalent to a ST
theory with one scalar field, but the form of the conformal factor A changes. These
theories only differ by higher-order terms in the series expansion (2.20), (2.22), which
are negligible at the onset of the scalarization.

In Fig. 3.6 we show the mass-radius relation of scalarized neutron star solutions
in the non-O(2) symmetric theory for different values of r and �0 + �1. When the
coupling is large, we observe that the solutions can differ dramatically from their GR
counterpart.

“Independent”	  biscalariza+on	  
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The field equations can be also written in terms of two real scalars. For this
purpose, let us split the field  into real and imaginary parts:  ⌘ Re[ ] + i Im[ ].
Then the conformal factor (2.24), again in the ↵ = ↵̄ = 0 case, reads:

logA( , ¯ ) =
1

2

⇥
(�0 + �1)Re[ ]

2
+ (�0 � �1)Im[ ]2

⇤
. (2.25)

The structure of this TMS theory is ultimately determined by three real parameters:
�0+�1, �0��1 and the target-space curvature defined by r2. When ↵ 6= 0, two further
parameters (|↵| and arg↵) are necessary to define the theory.

3. Stellar structure in tensor-multi-scalar theories

In this section we consider the structure of relativistic stars in the context of the TMS
theory introduced in Section 2.4. We first derive the equations of structure for a slowly
rotating star in the Hartle-Thorne formalism [49, 50] (Section 3.1), then we integrate
these equations and discuss some properties of scalarized solutions in increasingly
complex scenarios (Section 3.2).

3.1. Equations of hydrostatic equilibrium

We describe a stationary, axisymmetric star, composed by a perfect fluid, slowly
rotating with angular velocity ⌦, using coordinates xµ

= (t, r, ✓,�) and the line element

gµ⌫dx
µdx⌫

= �e⌫(r)dt2 +
dr2

1� 2µ(r)
+ r2(d✓2 + sin

2 ✓d�2)

+ 2 [!(r)� ⌦] r2 sin2 ✓dtd�. (3.1)

where we neglect terms of order ⇠ ⌦

2 and higher in the metric and in the
hydrodynamical quantities. The variable µ(r) is related to the more familiar mass
function m(r) by µ = m/r. The energy-momentum tensor of the perfect fluid takes
the usual form

Tµ⌫
= A4

( , ¯ ) [(⇢+ P )uµu⌫
+ Pgµ⌫ ] , (3.2)

where ⇢, P , and ũµ
= A�1

( , ¯ )uµ are the mass-energy density, pressure, and four-
velocity of the fluid, respectively, and

uµ
= e�⌫/2

(1, 0, 0, ⌦) . (3.3)
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Figure 3.7. Scalar field amplitudes in the full TMS theory - I. Scalar field amplitude at the stellar
center  0 for stellar models with �0 = �5, |↵| = 0.001 and fixed baryon mass MB = 1.8 M�. The
different panels show the solutions found for different values of �1 as indicated in each panel. In each
case, we vary the phase of ↵ from 0 to 2⇡ in steps of ⇡/6. In contrast to the ↵ = 0 case in Fig. 3.4,
the breaking of the O(2) symmetry occurs gradually as �1 is increased away from 0.

analogy with the single-field case) if �0+�1 . �4.35, and scalarized models with
a large imaginary part Im[ ] exist if �0 � �1 . �4.35. The biscalarized models
in Fig. 3.5 have been calculated for fixed �0 = �5. For �1 & 0.65 we therefore
enter the regime where �0 + �1 & �4.35, and we no longer expect to find models
with strongly scalarized Re[ ]. The condition �0��1 . �4.35 for scalarization of
Im[ ], however, remains satisfied, so that scalarized models should cluster close
to the Re[ 0]–axis. This is indeed observed in the bottom panels of Fig. 3.7.
Note that in this case the condition �1 & 0.65 � |↵| = 10

�3 is satisfied, in close
correspondence to the case ↵ = 0 of Fig. 3.5.

2) Figure 3.8 (which is a “zoom-in” on the top-left panel of Figure 3.7) indicates
additional fine structure in the space of solutions, with at least three different
families of scalarized solutions having remarkably different values of the scalar
field (and therefore of the scalar charge).

When r! 1, binary pulsar observations in the single-scalar case would impose a
constraint equivalent to �0+�1 & �4.5 [24]. More work is required to clarify whether a
similar constraint is in place also for multiple scalars. Preliminary calculations indicate
that the target-space curvature should affect the energy flux from compact binaries at
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H ab !"4vð1Þ
ða rbÞR" 2Rrðav

ð1Þ
bÞ þgab½2Rrcvð1Þ

c þ 4vð1Þ
c rcR'þf1

!
2RabR" 2rabR" 1

2
gab½R2" 4hR'

"
;

Iab !"vð2Þ
ða rbÞR" 2vð2Þ

c ½rðaR
c
bÞ "rcRab'þrcvð2Þ

c Rab" 2Rcðarcvð2Þ
bÞ þgab½vð2Þ

c rcRþRcdrcv
ð2Þ
d '

þf2

!
2RcdRacbd"rabRþhRabþ

1

2
gab½hR"RcdR

cd'
"
;

J ab !"8vð3Þ
c ½rðaRbÞ

c"rcRab'þ 4Rd
acbrcvð3Þ

d "f3

!
2½RabR" 4RcdRacbdþrabR" 2hRab'"

1

2
gab½R2" 4RcdR

cd'
"
;

Kab ! 4vð4Þ
c !cdeðareRbÞ

dþ 4rdv
ð4Þ
c

(Rða
c
bÞ
d; (5)

with vðiÞ
a ! rafiðj"jÞ,rab ¼ rarb,h ¼ rara and !abcd

the Levi-Civita tensor. The modified Klein-Gordon equa-
tion reads

h"¼ "

2j"j# ½V 0"#0@a"
(@a""f00R"f01R

2"f02RabR
ab

"f03RabcdR
abcd"f04Rabcd

(Rabcd"A0A3Tmat';
(6)

together with its complex conjugate. In the equations
above, a prime denotes a derivative with respect to j"j.

As shown in Table I, this theory is sufficient to discuss
stellar structure in many of the alternative theories listed in
Sec. II (and it can also describe boson stars in general
relativity, if we work in vacuum). As a matter of fact, some
terms in the Lagrangian (2) are redundant. For example, in
ordinary scalar-tensor theories the functions f0 and # can
be removed via a conformal transformation of the metric
and a redefinition of the scalar field; i.e., by reformulating
the theory in the Einstein frame [24]. However, depending
on the explicit form of f0 and #, these transformations can
be hard (if not impossible) to write in closed analytic form.
For this reason we find it convenient to start from the
general Lagrangian (2), which reduces to standard scalar-
tensor theories in the Jordan frame if Aðj"jÞ ! 1 and in the
Einstein frame if f0ðj"jÞ ! 1=ð16$Þ and #ðj"jÞ ! 1.
Another advantage of this approach is that, at least in
principle, it should also encompass generic fðRÞ theories,
which are equivalent to particular scalar-tensor theories
(but see [45] for possible issues with this point of view).

Simplifying the model

For generic coupling functions, the terms H ab, Iab,
J ab appearing on the left-hand side of the equations of
motion introduce higher-order derivatives of the metric
functions, unless quadratic terms in the curvature enter
the action in the GB combination (1). The GB combination
corresponds to setting f2 ¼ "4f1 and f3 ¼ f1 in our
model. Thus, if we only want second-order equations of
motion the Lagrangian (2) must reduce to

L ¼ f0ðj"jÞRþ f1ðj"jÞR2
GB þ f4ðj"jÞRabcd

(Rabcd

" #ðj"jÞ@a"(@a"" Vðj"jÞ þLmat½!; A2ðj"jÞgab':
(7)

In order to avoid the complications related to higher-
order derivatives, from now on we will specialize to this
Lagrangian.

IV. PERFECT-FLUID COMPACT STARS IN
EXTENDED SCALAR-TENSOR THEORIES

A. Static solutions

We begin by looking for static, spherically symmetric
equilibrium solutions of the field equations with metric

ds20 ¼ "BðrÞdt2 þ dr2

1" 2mðrÞ=rþ r2d%2 þ r2sin2%d’2

and a charged, spherically symmetric scalar field

TABLE I. Specific models obtained from the Lagrangian (2). Here & ! ð16$GÞ"1.

f0 f1 f2 f3 f4 ! V # A Lmat

General relativity & 0 0 0 0 0 0 1 1 perfect fluid
Scalar-tensor (Jordan frame) [24] Fð"Þ 0 0 0 0 0 Vð"Þ #ð"Þ 1 perfect fluid
Scalar-tensor (Einstein frame) [23] & 0 0 0 0 0 Vð"Þ 2& Að"Þ perfect fluid
fðRÞ [36] & 0 0 0 0 0 & Rf;R"f

16$ "Gf2;R
2& f"1=2

0 ¼ f"1=2
;R perfect fluid

Quadratic gravity [47] & '1" '2" '3" '4" 0 0 1 1 perfect fluid
EDGB [48] & e(" "4f1 f1 0 0 0 1 1 perfect fluid
Dynamical Chern-Simons [59] & 0 0 0 (" 0 0 1 1 perfect fluid
Boson stars [71] & 0 0 0 0 ! m2

2 j"j2 1 1 0
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inertia) leads to the existence of rather stringent exclusion
regions in the two-dimensional ð!;"Þ parameter space.

Some results are shown in Figs. 1–3 for different EOS
models and different values of ! and ". In each figure,
the top two panels show the mass-density relation and
the mass-radius relation for static (nonrotating) stars. The
bottom-left panel shows the binding energy as a function of
the central density. In the bottom right panel we display the
moment of inertia as a function of (gravitational) mass.

In our numerical calculations, we observed that the
scalar field in the interior of the star is always small: in
special cases it can be as large as !# 10$2, but more
typically ! & 10$4 in most of the parameter space. In the
small-field limit,! % 1, the coupling f1 in Eq. (28) can be
Taylor-expanded:

16#f1ð!Þ # !þ !"!: (29)

Since the first term is constant and the GB term is a
topological invariant, the first nonvanishing corrections
arise from the second term. Therefore, in the small-field
limit the equilibrium structure depends only on the product
!" of the coupling constants. This is confirmed by our
numerical results in Figs. 1–3: for instance the lines cor-
responding to ! ¼ 20M2

(,"
2 ¼ 1 and ! ¼ 10M2

(,"
2 ¼ 4

both correspond to the same !" ¼ 20M2
(, and indeed they

lie almost exactly on top of each other.
A similar degeneracy will occur for any other functional

form of f1ð!Þ, provided that the scalar field remains small
everywhere, so that a Taylor expansion similar to Eq. (29)
holds. In this sense, most of our results remain valid for a
generic function f1ð!Þ, and not only for EDGB gravity.
Furthermore, since only the second term on the right

hand side of Eq. (29) contributes to the dynamics, it
follows that the field equations are (approximately) sym-
metric under the transformation

! ! $!; ! ! $!: (30)

Taking advantage of this symmetry, we present results only
for the case !> 0. The solutions for !< 0 can be (ap-
proximately) obtained by simply inverting the sign of the
scalar field while leaving other physical quantities (such as
the mass, the radius or the moment of inertia) unchanged.
This argument is confirmed by a numerical integration of
the field equations. We have explicitly checked that the
results shown in Figs. 1–3 differ by only 0.1% or less from
the corresponding quantities computed when !< 0.
We note that, in the small ! limit, black hole solutions

can be found analytically [50] and they share the same
symmetry (30), which is exact in this case. However,
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FIG. 1 (color online). Compact star models in EDGB gravity for different values of the parameters ! and ", using the APR EOS. In
the bottom right panel we show the recent observation of a neutron star with M ) 2M( and a possible future observation of the
moment of inertia confirming general relativity within 10% [82]. Curves terminate when the condition (31) is not fulfilled (cf. also the
exclusion plot in Fig. 5).
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A	  “theory	  of	  theories”	  

The study of EDGB gravity in relativistic astrophysics
has been limited to a mathematical analysis of black hole
solutions [48,50–52] and, more recently, to their possible
observational signatures [47,53,54]. To our knowledge, the
present study is the first investigation of compact stars in
the theory (see Refs. [55,56] for other nonrotating solutions
in EDGB theory).

Parity-violating theories. Chern-Simons gravity is the
simplest theory that allows for parity-violating corrections
to general relativity [57]. Because of the nature of the
Chern-Simons corrections, all spherically symmetric
solutions of Einstein’s theory are also solutions of Chern-
Simons gravity. However, spinning objects in the nondy-
namical [58] and dynamical [59] versions of the theory are
affected by the Chern-Simons coupling. Future observa-
tions of the moment of inertia of compact stars may
strongly constrain the parameters of the theory [59].

Lorentz-violating theories. Einstein-aether theory intro-
duces a dynamical unit timelike vector coupled to gravity
as a natural way to implement Lorentz violation in
Einstein’s theory. In the parameter space compatible with
Solar System constraints, spherically symmetric neutron
stars in Einstein-aether theory have a lower maximum
mass than in general relativity [60,61]. Another popular
Lorentz-violating theory is Hořava gravity. The matching
conditions necessary to obtain stellar solutions in this
theory were considered in [62], but (to our knowledge)
there are no phenomenological studies of compact stars
using realistic EOS models.

Massive gravity. Recently, Damour et al. [63] reconsid-
ered the discontinuity problem of massive gravity and its
possible resolution through Vainshtein’s nonlinear resum-
mation of nonlinear effects. As part of this study, the
authors investigated the viability of spherically symmetric
stars in the theory. They showed that some solutions have
physical singularities, but also that there exist regular
solutions interpolating between a modified general relativ-
istic interior and a de Sitter exterior, with curvature pro-
portional to the square of the putative graviton mass. A
more phenomenological study of observational constraints
(including stellar rotation) is still lacking.

Eddington-inspired gravity. Bañados and Ferreira [64]
recently proposed a theory that is equivalent to general
relativity in vacuum, but differs from it in the coupling with
matter. An interesting aspect of this theory is that singu-
larities cannot form in early cosmology and during gravi-
tational collapse [64,65]. The maximum mass of compact
stars in the observationally viable sector of Eddington-
inspired gravity may be larger than in general relativity,
even for ‘‘ordinary’’ EOS models [65].

Gravitational-aether, f(T), TeVeS and other theories.
Some alternatives to general relativity that were proposed
to explain cosmological observations have also been
analyzed, at least to some extent, in the context
of compact stars. Among these theories we can list

‘‘gravitational-aether’’ theory [66], fðTÞ gravity [67] and
Bekenstein’s TeVeS [68]. In higher-dimensional brane-
world models, the embedding of four-dimensional stellar
solutions ‘‘on the brane’’ within acceptable higher-
dimensional solution is a nontrivial problem [69] (but see
[70] for related work in a slightly different context).

III. EXTENDED SCALAR-TENSOR THEORIES

From the previous summary it should be clear that it is
nearly impossible to discuss all strong-field modifications
of general relativity in a unified framework. However, in
this section we show that on the basis of some rather
general arguments we can easily write down a
Lagrangian encompassing the first four classes of theories
reviewed above (namely general scalar-tensor theories,
fðRÞ theories, EDGB gravity and Chern-Simons gravity).
Our starting point is a Lagrangian in which gravity is

coupled to a single (generically charged) scalar field ! in
all possible ways, including all linearly independent qua-
dratic curvature corrections to general relativity. We call
these models ‘‘extended scalar-tensor theories.’’ The most
general Lagrangian of such a theory contains several func-
tions of the scalar field in the combination

L ¼ f0ðj!jÞR$ "ðj!jÞ@a!%@a!$ Vðj!jÞ þ f1ðj!jÞR2

þ f2ðj!jÞRabR
ab þ f3ðj!jÞRabcdR

abcd

þ f4ðj!jÞRabcd
%Rabcd þLmat½!; A2ðj!jÞgab(; (2)

where %Rabcd is the dual of the Riemann tensor, which
introduces possible parity-violating corrections [57]. From
the Lagrangian above, the equations of motion read:

Gab þ
1

f0
½H ab þ Iab þ J ab þKab(

¼ 1

2f0
½A2Tmat

ab þ Tð!Þ
ab (; (3)

where Tmat
ab ¼ 2ð$gÞ$1=2#Sm=#gab is the matter stress-

energy tensor in the Jordan frame,

Tð!Þ
ab ¼ "½2@ða!%@bÞ!$ gab@c!

%@c!(
$ gabV þ 2rarbf0 $ 2gabr2f0; (4)

and, following the notation of Ref. [47], we have defined
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terms ofOð!2Þ, the moment of inertia is given by I ¼ J=!
and it does not depend on !c, but only on the stellar mass.
Thereforewe need to integrate Eq. (20) only once in order to
obtain I for a given mass.

With the slowly rotating solution at hand, we can also
study the possibility of ergoregion formation [73]. The
ergoregion can be found by computing the surface at which
gtt vanishes, i.e., from Eq. (18):

$ BðrÞ þ !2r2sin2" ¼ 0: (24)

On the equatorial plane we simply have

r!ðrÞ ¼
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
; (25)

and, due to the linearity of the field equations, ! will scale
linearly with !. Thus, one needs only a single integration
in order to compute the zeros of Eq. (25) as functions of!.
For a given value of !, there can be no zeros (i.e. no
ergoregion), two distinct zeros (with the ergoregion located
between them) or two coincident zeros. The ‘‘critical
frequency’’ at which we have two coincident zeros, say
!c, is the minimum rotation frequency for which an ergo-
region exists. The slow-rotation approximation imposes
! & !ms, where the mass shedding frequency is defined

as !ms &
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

s

p
, following Hartle’s conventions. The

existence of an ergoregion requires !>!c, so an ergore-
gion can exist (in the slow-rotation approximation) only if

!c <!ms: (26)

C. Equation of state

We wish to establish some limits on the parameters of
allowed theories of gravity, given a set of EOS models
compatible with our present knowledge of nuclear physics.
Instead of general relativity being assumed, the parameters
characterizing any specific theory will be constrained
based on astrophysical observations. These constraints
will be sensitive to our assumptions on the EOS, that we
describe in this section.

A list of the EOS models used in this work is given in
Table II. For code testing purposes, we have considered the
same polytropic model used by Damour and Esposito-
Farése [23]:

#¼ nmbþK
n0mb

"$ 1

"
n

n0

#
"
; P¼Kn0mb

"
n

n0

#
"
; (27)

with mb ¼ 1:66' 10$24 g, n0 ¼ 0:1 fm$3, " ¼ 2:34 and
K ¼ 0:0195.
We also considered two nuclear-physics motivated mod-

els (FPS [74] and APR [75], in the standard nomenclature),
which are, respectively, a soft EOS and a more standard
realistic EOS, as well as the stiffest possible EOS con-
structed by combining the upper limit in the crust-core
transition region of Hebeler et al. [15] with a causal limit
EOS as in [76]. The polytropic model (27) gives results
which are quantitatively very similar to those for the FPS
EOS.
We must remark that the FPS EOS seems to be ruled

out by the recent observation of a neutron star with M ¼
ð1:97( 0:04ÞM) [12], at least if we limit consideration to
nonrotating models4 within general relativity. However,
these observations could be explained in terms of modified
gravity at high density, rather than by invoking a different
EOS. In fact, in some alternative theories the maximum
mass of a neutron star can be sensibly larger than in
general relativity [30,65]. Another important motivation
to use the FPS EOS is to make direct comparison with
previous work. We explicitly checked that our two inde-
pendent codes (written in MATHEMATICA and C++) are in
excellent agreement with Refs. [5,78,79] in the general
relativistic limit.5

V. COMPACT STARS IN
GAUSS-BONNET GRAVITY

As a first application of the formalism discussed above,
in the remainder of this paper we study neutron stars in
EDGB gravity. We defer a more general study of the full
theory derived from the Lagrangian (7) to future work.
EDGB gravity is obtained from the Lagrangian (7)

by considering a real scalar field $ ¼ # (or ! ¼ 0),
f0 & % ¼ ð16&Þ$1, V & 0 and

f1 &
'

16&
e(#; (28)

where ' and ( are coupling constants. When ( ¼
ffiffiffi
2

p
, this

theory arises as a low-energy correction to the tree-level
action in heterotic string theory [49]. Here we adopt a
phenomenological point of view and consider ' and ( as
free (real) parameters. We will show by an explicit calcu-
lation that, under reasonable assumptions for the nuclear
EOS, the observation of compact stars with certain ob-
served properties (such as mass, radius or moment of

TABLE II. List of EOS used in this work.

EOS Reference

Polytropic [23]
FPS [74]
APR [75]
Causal limit [15,76]

4Rapidly rotating neutron stars have a larger maximum mass
which, using the FPS EOS, is still marginally compatible with
the observational errors in a small region of the parameter space:
some rapidly rotating models in Table 3 of [77] have a gravita-
tional mass compatible with the value measured in [12].

5Incidentally, the moment of inertia shown in Fig. 3 of [59] is
not computed using the FPS EOS, as erroneously written in the
caption of that figure. This explains why our results for the FPS
EOS do not agree with those in [59].
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inertia) leads to the existence of rather stringent exclusion
regions in the two-dimensional ð!;"Þ parameter space.

Some results are shown in Figs. 1–3 for different EOS
models and different values of ! and ". In each figure,
the top two panels show the mass-density relation and
the mass-radius relation for static (nonrotating) stars. The
bottom-left panel shows the binding energy as a function of
the central density. In the bottom right panel we display the
moment of inertia as a function of (gravitational) mass.

In our numerical calculations, we observed that the
scalar field in the interior of the star is always small: in
special cases it can be as large as !# 10$2, but more
typically ! & 10$4 in most of the parameter space. In the
small-field limit,! % 1, the coupling f1 in Eq. (28) can be
Taylor-expanded:

16#f1ð!Þ # !þ !"!: (29)

Since the first term is constant and the GB term is a
topological invariant, the first nonvanishing corrections
arise from the second term. Therefore, in the small-field
limit the equilibrium structure depends only on the product
!" of the coupling constants. This is confirmed by our
numerical results in Figs. 1–3: for instance the lines cor-
responding to ! ¼ 20M2

(,"
2 ¼ 1 and ! ¼ 10M2

(,"
2 ¼ 4

both correspond to the same !" ¼ 20M2
(, and indeed they

lie almost exactly on top of each other.
A similar degeneracy will occur for any other functional

form of f1ð!Þ, provided that the scalar field remains small
everywhere, so that a Taylor expansion similar to Eq. (29)
holds. In this sense, most of our results remain valid for a
generic function f1ð!Þ, and not only for EDGB gravity.
Furthermore, since only the second term on the right

hand side of Eq. (29) contributes to the dynamics, it
follows that the field equations are (approximately) sym-
metric under the transformation

! ! $!; ! ! $!: (30)

Taking advantage of this symmetry, we present results only
for the case !> 0. The solutions for !< 0 can be (ap-
proximately) obtained by simply inverting the sign of the
scalar field while leaving other physical quantities (such as
the mass, the radius or the moment of inertia) unchanged.
This argument is confirmed by a numerical integration of
the field equations. We have explicitly checked that the
results shown in Figs. 1–3 differ by only 0.1% or less from
the corresponding quantities computed when !< 0.
We note that, in the small ! limit, black hole solutions

can be found analytically [50] and they share the same
symmetry (30), which is exact in this case. However,
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FIG. 1 (color online). Compact star models in EDGB gravity for different values of the parameters ! and ", using the APR EOS. In
the bottom right panel we show the recent observation of a neutron star with M ) 2M( and a possible future observation of the
moment of inertia confirming general relativity within 10% [82]. Curves terminate when the condition (31) is not fulfilled (cf. also the
exclusion plot in Fig. 5).
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reached to the left of the points marked by filled circles. In
this case, the Mð!cÞ curves terminate before reaching a
local maximum, and the maximum central density !max

c is
simply the point where the equilibrium sequence termi-
nates. Dotted lines correspond to the analytical prediction
(31), which agrees very well with the numerical value at
which we cannot compute equilibrium models anymore.
The bottom line is that no static models (either stable or
unstable) can be constructed in the shadowed regions
above these exclusion lines.

The quadratic EDGB corrections are expected to be
stronger in high-density (high-curvature) regions, so the
most stringent bounds should come from the stiffest EOS
models. Indeed, among the models we consider, the stron-
gest and weakest constraints come from the Causal EOS
and from the FPS EOS, respectively.

The bounds on the central density can be translated into
constraints on the maximum mass, which is an observable
quantity. As shown in Fig. 4, for a given EOS the maximum
mass is a monotonically decreasing function of "#.

The requirement that the maximum mass Mmax sup-
ported by the theory should be larger than some trusted
observed value, can place a direct upper bound on "#. In
Table III, we considerMmax * 1:4M#,Mmax * 1:7M# and
Mmax * 1:93M# (which is the lower bound of the recent
observation in [12]) and we translate them into upper
bounds on "# using the data plotted in Fig. 4. The
Causal EOS models predict an unrealistically large maxi-
mum mass, so all neutron stars withMmax & 2:8M# would
place very mild constraints on alternative theories, and we
omit this EOS from Table III.

For the ‘‘standard’’ value of the EDGB coupling
(# ¼

ffiffiffi
2

p
), if we consider the APR EOS as our ‘‘best

candidate’’ EOS for a (nonexotic) neutron star interior
within general relativity, the results in Table III imply
" & 23:8M2

#.
This bound should be compared to the bound on "

that comes from requiring the existence of black hole
solutions in the theory [48,53]. For # ¼

ffiffiffi
2

p
, this require-

ment implies

"

M2
#
& 70

"
MBH

10M#

#
2
; (32)

where MBH is the black hole mass. The observation of
black holes withMBH % 8M# (such as Cyg X1) constrains
" & 44M2

#. The constraints on " coming from observa-
tions of compact stars (cf. Table III) are already smaller by
a factor&2 than those coming from the existence of stellar
black holes, and they could become even more stringent in
the near future.
We may hope that future observations of the moment of

inertia could place even tighter bounds on the theory.
Unfortunately this seems unlikely. To understand why,
we can either look at the bottom right panel of Fig. 1 or
at Fig. 6, where we show the moment of inertia for the APR
EOS (normalized by its value in general relativity) as a
function of "# for fixed values of the stellar mass. As it
turns out, for values of "# smaller than those listed in
Table III, the moment of inertia can deviate from the
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FIG. 5 (color online). Exclusion plot for the parameters "# in
the small !c limit and for nonrotating models. Only the combi-
nation "# is bounded, due to the approximation ! ' 1 (cf.
Eq. (29)). In the region above the dotted lines no compact star
solution can be constructed (cf. Eq. (31)). In the region above the
thick lines (marked as ‘‘RI,’’ Radial Instability), static configu-
rations are unstable against radial perturbations (cf. the main text
for details). Markers indicate the maximum central density of
radially stable stars in general relativity.

TABLE III. Constraints on the EDGB parameters from an
observation of a nonrotating neutron star with mass M. For the
values of M we consider, constraints using the Causal EOS
would allow values of "# larger than 100M2

#.

EOS Mmax * 1:4M# Mmax * 1:7M# Mmax * 1:93M#

FPS "# & 30:1M2
# "# & 13:9M2

# no models
APR "# & 50:3M2

# "# & 41:9M2
# "# & 33:6M2

#
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FIG. 6 (color online). Moment of inertia normalized by its
value in general relativity for the APR EOS at fixed values of
the gravitational mass. Curves terminate at the bounds listed in
Table III (corresponding to the filled circles). The deviations
from general relativity are always smaller than 5%.
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inertia) leads to the existence of rather stringent exclusion
regions in the two-dimensional ð!;"Þ parameter space.

Some results are shown in Figs. 1–3 for different EOS
models and different values of ! and ". In each figure,
the top two panels show the mass-density relation and
the mass-radius relation for static (nonrotating) stars. The
bottom-left panel shows the binding energy as a function of
the central density. In the bottom right panel we display the
moment of inertia as a function of (gravitational) mass.

In our numerical calculations, we observed that the
scalar field in the interior of the star is always small: in
special cases it can be as large as !# 10$2, but more
typically ! & 10$4 in most of the parameter space. In the
small-field limit,! % 1, the coupling f1 in Eq. (28) can be
Taylor-expanded:

16#f1ð!Þ # !þ !"!: (29)

Since the first term is constant and the GB term is a
topological invariant, the first nonvanishing corrections
arise from the second term. Therefore, in the small-field
limit the equilibrium structure depends only on the product
!" of the coupling constants. This is confirmed by our
numerical results in Figs. 1–3: for instance the lines cor-
responding to ! ¼ 20M2

(,"
2 ¼ 1 and ! ¼ 10M2

(,"
2 ¼ 4

both correspond to the same !" ¼ 20M2
(, and indeed they

lie almost exactly on top of each other.
A similar degeneracy will occur for any other functional

form of f1ð!Þ, provided that the scalar field remains small
everywhere, so that a Taylor expansion similar to Eq. (29)
holds. In this sense, most of our results remain valid for a
generic function f1ð!Þ, and not only for EDGB gravity.
Furthermore, since only the second term on the right

hand side of Eq. (29) contributes to the dynamics, it
follows that the field equations are (approximately) sym-
metric under the transformation

! ! $!; ! ! $!: (30)

Taking advantage of this symmetry, we present results only
for the case !> 0. The solutions for !< 0 can be (ap-
proximately) obtained by simply inverting the sign of the
scalar field while leaving other physical quantities (such as
the mass, the radius or the moment of inertia) unchanged.
This argument is confirmed by a numerical integration of
the field equations. We have explicitly checked that the
results shown in Figs. 1–3 differ by only 0.1% or less from
the corresponding quantities computed when !< 0.
We note that, in the small ! limit, black hole solutions

can be found analytically [50] and they share the same
symmetry (30), which is exact in this case. However,
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FIG. 1 (color online). Compact star models in EDGB gravity for different values of the parameters ! and ", using the APR EOS. In
the bottom right panel we show the recent observation of a neutron star with M ) 2M( and a possible future observation of the
moment of inertia confirming general relativity within 10% [82]. Curves terminate when the condition (31) is not fulfilled (cf. also the
exclusion plot in Fig. 5).
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numerical black hole solutions found for generic values of
! may be coupled to a large scalar field (cf. Table I in
Ref. [48]), so that the expansion (29) does not hold and the
degeneracy between ! and!! is broken. As we discussed
above, this is not the case for neutron stars, for which the
scalar field is typically small.

It is clear from Figs. 1–3 that, regardless of the EOS and
for any value of !, the coupling to the dilaton tends to
reduce the importance of relativistic effects. Indeed, as
shown in Fig. 4, the maximum gravitational mass Mmax

monotonically decreases as a function of the product!" of
the EDGB coupling parameters. Thus in EDGB gravity (as
well as in general relativity) soft EOS models, like FPS,
should be ruled out by observations of high-mass neutron
stars. This is similar to what happens in gravitational-
aether theory [66] and in Einstein-aether theory [61].

For small values of the product !", the maximum mass
in Fig. 4 corresponds to a local maximum in the mass-
density relation (cf. the upper left panels of Figs. 1–3). In
general relativity these local maxima (or, equivalently,
inversion points in the mass-radius diagram) correspond
to marginally stable equilibrium configurations, and solu-
tions to the right of the first maximum are unstable to radial
perturbations (see e.g. [2]). We conjecture that the same
property should hold also for extended scalar-tensor theo-
ries. This was proved for particular self-gravitating con-
figurations involving scalar fields [29,80,81], but a more
detailed stability analysis would be desirable (see also the
discussion in [32]). In EDGB theory, spherically symmet-
ric solutions can be constructed only up to a maximum
central density #max

c ð!;"Þ, for reasons explained below:
see, in particular, the discussion around Eq. (31). For large

!" this maximum central density is such that the first local
maximum in the mass-density curve is never reached. In
Fig. 4, all values to the left of the solid circles correspond to
a maximum mass obtained from the radial stability crite-
rion. Values to the right of the solid circles correspond
instead to the massMmax obtained at the critical value of #c

beyond which we cannot find spherically symmetric
perfect-fluid solutions anymore.

Constraints on the EDGB couplings

In the near future, observations of double pulsars
may provide measurements of the moment of inertia to
an accuracy of $10% [82] (but see Ref. [83] for some
criticism). Furthermore, precise observations of the mass-
radius relation could be obtained from thermonuclear
X-ray burst [84,85]. These observations could be used in
the context of a Bayesian model-selection framework to
place strong constraints on EDGB gravity and, more gen-
erally, to remove the degeneracy between different EOS
models and different proposed modifications of general
relativity.
Nevertheless, even without assuming any particular

EOS, we can set rather stringent theoretical constraints
on the EDGB parameters. Indeed, as shown in Figs. 1–3,
depending on ! and ", there is a maximum value of the
central density #c, above which no compact star models
can be constructed. For a given central density, the critical
value of !" can be computed analytically in the small !
limit, as follows. We first compute the series expansion
(15) up to Oðr2Þ. The resulting expressions are not very
illuminating, but in general the series coefficients contain
square roots, whose argument must be positive to ensure
the existence of physical (real-valued) solutions. When
!c % 1, by imposing this ‘‘reality condition’’ we find
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(31)

For a given value of !", the condition above implies that a
maximum central density, #max

c , exists.
Equation (31) is in good agreement with numerical

results, as shown in Fig. 5. This figure is basically an
exclusion plot: it shows the maximum allowed values of
!" as a function of the maximum central density #max

c for
different EOS models and nonrotating stars. For small
values of !" (i.e., on the right of the figure), a local
maximum in the mass-density relation is reached and the
maximum central density #max

c corresponds to the local
maximum of Mð#cÞ, i.e. to the first inversion point in the
mass-radius relation. If our stability conjecture is correct,
no stable static configurations can be constructed in the
region above these lines. The local maximum is never

FIG. 4 (color online). Maximum mass as a function of the
product !" of the EDGB coupling parameters, for different EOS
models and in the nonrotating case (cf. the main text for details).
To the left of the filled circle, this maximum mass corresponds to
the radial stability criterion; to the right, it corresponds to the
maximum central density for which we can construct static
equilibrium models. The recent measurement [12] of a neutron
star with M ' 2M( is marked by a horizontal line. Only the
combination !" is bounded, due to the approximation ! % 1
(cf. Eq. (29)).
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reached to the left of the points marked by filled circles. In
this case, the Mð!cÞ curves terminate before reaching a
local maximum, and the maximum central density !max

c is
simply the point where the equilibrium sequence termi-
nates. Dotted lines correspond to the analytical prediction
(31), which agrees very well with the numerical value at
which we cannot compute equilibrium models anymore.
The bottom line is that no static models (either stable or
unstable) can be constructed in the shadowed regions
above these exclusion lines.

The quadratic EDGB corrections are expected to be
stronger in high-density (high-curvature) regions, so the
most stringent bounds should come from the stiffest EOS
models. Indeed, among the models we consider, the stron-
gest and weakest constraints come from the Causal EOS
and from the FPS EOS, respectively.

The bounds on the central density can be translated into
constraints on the maximum mass, which is an observable
quantity. As shown in Fig. 4, for a given EOS the maximum
mass is a monotonically decreasing function of "#.

The requirement that the maximum mass Mmax sup-
ported by the theory should be larger than some trusted
observed value, can place a direct upper bound on "#. In
Table III, we considerMmax * 1:4M#,Mmax * 1:7M# and
Mmax * 1:93M# (which is the lower bound of the recent
observation in [12]) and we translate them into upper
bounds on "# using the data plotted in Fig. 4. The
Causal EOS models predict an unrealistically large maxi-
mum mass, so all neutron stars withMmax & 2:8M# would
place very mild constraints on alternative theories, and we
omit this EOS from Table III.

For the ‘‘standard’’ value of the EDGB coupling
(# ¼

ffiffiffi
2

p
), if we consider the APR EOS as our ‘‘best

candidate’’ EOS for a (nonexotic) neutron star interior
within general relativity, the results in Table III imply
" & 23:8M2

#.
This bound should be compared to the bound on "

that comes from requiring the existence of black hole
solutions in the theory [48,53]. For # ¼

ffiffiffi
2

p
, this require-

ment implies

"

M2
#
& 70

"
MBH

10M#

#
2
; (32)

where MBH is the black hole mass. The observation of
black holes withMBH % 8M# (such as Cyg X1) constrains
" & 44M2

#. The constraints on " coming from observa-
tions of compact stars (cf. Table III) are already smaller by
a factor&2 than those coming from the existence of stellar
black holes, and they could become even more stringent in
the near future.
We may hope that future observations of the moment of

inertia could place even tighter bounds on the theory.
Unfortunately this seems unlikely. To understand why,
we can either look at the bottom right panel of Fig. 1 or
at Fig. 6, where we show the moment of inertia for the APR
EOS (normalized by its value in general relativity) as a
function of "# for fixed values of the stellar mass. As it
turns out, for values of "# smaller than those listed in
Table III, the moment of inertia can deviate from the
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FIG. 5 (color online). Exclusion plot for the parameters "# in
the small !c limit and for nonrotating models. Only the combi-
nation "# is bounded, due to the approximation ! ' 1 (cf.
Eq. (29)). In the region above the dotted lines no compact star
solution can be constructed (cf. Eq. (31)). In the region above the
thick lines (marked as ‘‘RI,’’ Radial Instability), static configu-
rations are unstable against radial perturbations (cf. the main text
for details). Markers indicate the maximum central density of
radially stable stars in general relativity.

TABLE III. Constraints on the EDGB parameters from an
observation of a nonrotating neutron star with mass M. For the
values of M we consider, constraints using the Causal EOS
would allow values of "# larger than 100M2

#.

EOS Mmax * 1:4M# Mmax * 1:7M# Mmax * 1:93M#

FPS "# & 30:1M2
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FIG. 6 (color online). Moment of inertia normalized by its
value in general relativity for the APR EOS at fixed values of
the gravitational mass. Curves terminate at the bounds listed in
Table III (corresponding to the filled circles). The deviations
from general relativity are always smaller than 5%.
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reached to the left of the points marked by filled circles. In
this case, the Mð!cÞ curves terminate before reaching a
local maximum, and the maximum central density !max

c is
simply the point where the equilibrium sequence termi-
nates. Dotted lines correspond to the analytical prediction
(31), which agrees very well with the numerical value at
which we cannot compute equilibrium models anymore.
The bottom line is that no static models (either stable or
unstable) can be constructed in the shadowed regions
above these exclusion lines.

The quadratic EDGB corrections are expected to be
stronger in high-density (high-curvature) regions, so the
most stringent bounds should come from the stiffest EOS
models. Indeed, among the models we consider, the stron-
gest and weakest constraints come from the Causal EOS
and from the FPS EOS, respectively.

The bounds on the central density can be translated into
constraints on the maximum mass, which is an observable
quantity. As shown in Fig. 4, for a given EOS the maximum
mass is a monotonically decreasing function of "#.

The requirement that the maximum mass Mmax sup-
ported by the theory should be larger than some trusted
observed value, can place a direct upper bound on "#. In
Table III, we considerMmax * 1:4M#,Mmax * 1:7M# and
Mmax * 1:93M# (which is the lower bound of the recent
observation in [12]) and we translate them into upper
bounds on "# using the data plotted in Fig. 4. The
Causal EOS models predict an unrealistically large maxi-
mum mass, so all neutron stars withMmax & 2:8M# would
place very mild constraints on alternative theories, and we
omit this EOS from Table III.

For the ‘‘standard’’ value of the EDGB coupling
(# ¼

ffiffiffi
2

p
), if we consider the APR EOS as our ‘‘best

candidate’’ EOS for a (nonexotic) neutron star interior
within general relativity, the results in Table III imply
" & 23:8M2

#.
This bound should be compared to the bound on "

that comes from requiring the existence of black hole
solutions in the theory [48,53]. For # ¼

ffiffiffi
2

p
, this require-

ment implies
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& 70
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MBH
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2
; (32)

where MBH is the black hole mass. The observation of
black holes withMBH % 8M# (such as Cyg X1) constrains
" & 44M2

#. The constraints on " coming from observa-
tions of compact stars (cf. Table III) are already smaller by
a factor&2 than those coming from the existence of stellar
black holes, and they could become even more stringent in
the near future.
We may hope that future observations of the moment of

inertia could place even tighter bounds on the theory.
Unfortunately this seems unlikely. To understand why,
we can either look at the bottom right panel of Fig. 1 or
at Fig. 6, where we show the moment of inertia for the APR
EOS (normalized by its value in general relativity) as a
function of "# for fixed values of the stellar mass. As it
turns out, for values of "# smaller than those listed in
Table III, the moment of inertia can deviate from the
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FIG. 5 (color online). Exclusion plot for the parameters "# in
the small !c limit and for nonrotating models. Only the combi-
nation "# is bounded, due to the approximation ! ' 1 (cf.
Eq. (29)). In the region above the dotted lines no compact star
solution can be constructed (cf. Eq. (31)). In the region above the
thick lines (marked as ‘‘RI,’’ Radial Instability), static configu-
rations are unstable against radial perturbations (cf. the main text
for details). Markers indicate the maximum central density of
radially stable stars in general relativity.

TABLE III. Constraints on the EDGB parameters from an
observation of a nonrotating neutron star with mass M. For the
values of M we consider, constraints using the Causal EOS
would allow values of "# larger than 100M2
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EOS Mmax * 1:4M# Mmax * 1:7M# Mmax * 1:93M#

FPS "# & 30:1M2
# "# & 13:9M2

# no models
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FIG. 6 (color online). Moment of inertia normalized by its
value in general relativity for the APR EOS at fixed values of
the gravitational mass. Curves terminate at the bounds listed in
Table III (corresponding to the filled circles). The deviations
from general relativity are always smaller than 5%.
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reached to the left of the points marked by filled circles. In
this case, the Mð!cÞ curves terminate before reaching a
local maximum, and the maximum central density !max

c is
simply the point where the equilibrium sequence termi-
nates. Dotted lines correspond to the analytical prediction
(31), which agrees very well with the numerical value at
which we cannot compute equilibrium models anymore.
The bottom line is that no static models (either stable or
unstable) can be constructed in the shadowed regions
above these exclusion lines.

The quadratic EDGB corrections are expected to be
stronger in high-density (high-curvature) regions, so the
most stringent bounds should come from the stiffest EOS
models. Indeed, among the models we consider, the stron-
gest and weakest constraints come from the Causal EOS
and from the FPS EOS, respectively.

The bounds on the central density can be translated into
constraints on the maximum mass, which is an observable
quantity. As shown in Fig. 4, for a given EOS the maximum
mass is a monotonically decreasing function of "#.

The requirement that the maximum mass Mmax sup-
ported by the theory should be larger than some trusted
observed value, can place a direct upper bound on "#. In
Table III, we considerMmax * 1:4M#,Mmax * 1:7M# and
Mmax * 1:93M# (which is the lower bound of the recent
observation in [12]) and we translate them into upper
bounds on "# using the data plotted in Fig. 4. The
Causal EOS models predict an unrealistically large maxi-
mum mass, so all neutron stars withMmax & 2:8M# would
place very mild constraints on alternative theories, and we
omit this EOS from Table III.

For the ‘‘standard’’ value of the EDGB coupling
(# ¼

ffiffiffi
2

p
), if we consider the APR EOS as our ‘‘best

candidate’’ EOS for a (nonexotic) neutron star interior
within general relativity, the results in Table III imply
" & 23:8M2

#.
This bound should be compared to the bound on "

that comes from requiring the existence of black hole
solutions in the theory [48,53]. For # ¼

ffiffiffi
2

p
, this require-

ment implies
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2
; (32)

where MBH is the black hole mass. The observation of
black holes withMBH % 8M# (such as Cyg X1) constrains
" & 44M2

#. The constraints on " coming from observa-
tions of compact stars (cf. Table III) are already smaller by
a factor&2 than those coming from the existence of stellar
black holes, and they could become even more stringent in
the near future.
We may hope that future observations of the moment of

inertia could place even tighter bounds on the theory.
Unfortunately this seems unlikely. To understand why,
we can either look at the bottom right panel of Fig. 1 or
at Fig. 6, where we show the moment of inertia for the APR
EOS (normalized by its value in general relativity) as a
function of "# for fixed values of the stellar mass. As it
turns out, for values of "# smaller than those listed in
Table III, the moment of inertia can deviate from the
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FIG. 5 (color online). Exclusion plot for the parameters "# in
the small !c limit and for nonrotating models. Only the combi-
nation "# is bounded, due to the approximation ! ' 1 (cf.
Eq. (29)). In the region above the dotted lines no compact star
solution can be constructed (cf. Eq. (31)). In the region above the
thick lines (marked as ‘‘RI,’’ Radial Instability), static configu-
rations are unstable against radial perturbations (cf. the main text
for details). Markers indicate the maximum central density of
radially stable stars in general relativity.

TABLE III. Constraints on the EDGB parameters from an
observation of a nonrotating neutron star with mass M. For the
values of M we consider, constraints using the Causal EOS
would allow values of "# larger than 100M2

#.

EOS Mmax * 1:4M# Mmax * 1:7M# Mmax * 1:93M#

FPS "# & 30:1M2
# "# & 13:9M2

# no models
APR "# & 50:3M2

# "# & 41:9M2
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FIG. 6 (color online). Moment of inertia normalized by its
value in general relativity for the APR EOS at fixed values of
the gravitational mass. Curves terminate at the bounds listed in
Table III (corresponding to the filled circles). The deviations
from general relativity are always smaller than 5%.
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reached to the left of the points marked by filled circles. In
this case, the Mð!cÞ curves terminate before reaching a
local maximum, and the maximum central density !max

c is
simply the point where the equilibrium sequence termi-
nates. Dotted lines correspond to the analytical prediction
(31), which agrees very well with the numerical value at
which we cannot compute equilibrium models anymore.
The bottom line is that no static models (either stable or
unstable) can be constructed in the shadowed regions
above these exclusion lines.

The quadratic EDGB corrections are expected to be
stronger in high-density (high-curvature) regions, so the
most stringent bounds should come from the stiffest EOS
models. Indeed, among the models we consider, the stron-
gest and weakest constraints come from the Causal EOS
and from the FPS EOS, respectively.

The bounds on the central density can be translated into
constraints on the maximum mass, which is an observable
quantity. As shown in Fig. 4, for a given EOS the maximum
mass is a monotonically decreasing function of "#.

The requirement that the maximum mass Mmax sup-
ported by the theory should be larger than some trusted
observed value, can place a direct upper bound on "#. In
Table III, we considerMmax * 1:4M#,Mmax * 1:7M# and
Mmax * 1:93M# (which is the lower bound of the recent
observation in [12]) and we translate them into upper
bounds on "# using the data plotted in Fig. 4. The
Causal EOS models predict an unrealistically large maxi-
mum mass, so all neutron stars withMmax & 2:8M# would
place very mild constraints on alternative theories, and we
omit this EOS from Table III.

For the ‘‘standard’’ value of the EDGB coupling
(# ¼

ffiffiffi
2

p
), if we consider the APR EOS as our ‘‘best

candidate’’ EOS for a (nonexotic) neutron star interior
within general relativity, the results in Table III imply
" & 23:8M2

#.
This bound should be compared to the bound on "

that comes from requiring the existence of black hole
solutions in the theory [48,53]. For # ¼

ffiffiffi
2

p
, this require-

ment implies
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2
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where MBH is the black hole mass. The observation of
black holes withMBH % 8M# (such as Cyg X1) constrains
" & 44M2

#. The constraints on " coming from observa-
tions of compact stars (cf. Table III) are already smaller by
a factor&2 than those coming from the existence of stellar
black holes, and they could become even more stringent in
the near future.
We may hope that future observations of the moment of

inertia could place even tighter bounds on the theory.
Unfortunately this seems unlikely. To understand why,
we can either look at the bottom right panel of Fig. 1 or
at Fig. 6, where we show the moment of inertia for the APR
EOS (normalized by its value in general relativity) as a
function of "# for fixed values of the stellar mass. As it
turns out, for values of "# smaller than those listed in
Table III, the moment of inertia can deviate from the
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FIG. 5 (color online). Exclusion plot for the parameters "# in
the small !c limit and for nonrotating models. Only the combi-
nation "# is bounded, due to the approximation ! ' 1 (cf.
Eq. (29)). In the region above the dotted lines no compact star
solution can be constructed (cf. Eq. (31)). In the region above the
thick lines (marked as ‘‘RI,’’ Radial Instability), static configu-
rations are unstable against radial perturbations (cf. the main text
for details). Markers indicate the maximum central density of
radially stable stars in general relativity.

TABLE III. Constraints on the EDGB parameters from an
observation of a nonrotating neutron star with mass M. For the
values of M we consider, constraints using the Causal EOS
would allow values of "# larger than 100M2
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EOS Mmax * 1:4M# Mmax * 1:7M# Mmax * 1:93M#

FPS "# & 30:1M2
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FIG. 6 (color online). Moment of inertia normalized by its
value in general relativity for the APR EOS at fixed values of
the gravitational mass. Curves terminate at the bounds listed in
Table III (corresponding to the filled circles). The deviations
from general relativity are always smaller than 5%.
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reached to the left of the points marked by filled circles. In
this case, the Mð!cÞ curves terminate before reaching a
local maximum, and the maximum central density !max

c is
simply the point where the equilibrium sequence termi-
nates. Dotted lines correspond to the analytical prediction
(31), which agrees very well with the numerical value at
which we cannot compute equilibrium models anymore.
The bottom line is that no static models (either stable or
unstable) can be constructed in the shadowed regions
above these exclusion lines.

The quadratic EDGB corrections are expected to be
stronger in high-density (high-curvature) regions, so the
most stringent bounds should come from the stiffest EOS
models. Indeed, among the models we consider, the stron-
gest and weakest constraints come from the Causal EOS
and from the FPS EOS, respectively.

The bounds on the central density can be translated into
constraints on the maximum mass, which is an observable
quantity. As shown in Fig. 4, for a given EOS the maximum
mass is a monotonically decreasing function of "#.

The requirement that the maximum mass Mmax sup-
ported by the theory should be larger than some trusted
observed value, can place a direct upper bound on "#. In
Table III, we considerMmax * 1:4M#,Mmax * 1:7M# and
Mmax * 1:93M# (which is the lower bound of the recent
observation in [12]) and we translate them into upper
bounds on "# using the data plotted in Fig. 4. The
Causal EOS models predict an unrealistically large maxi-
mum mass, so all neutron stars withMmax & 2:8M# would
place very mild constraints on alternative theories, and we
omit this EOS from Table III.

For the ‘‘standard’’ value of the EDGB coupling
(# ¼

ffiffiffi
2

p
), if we consider the APR EOS as our ‘‘best

candidate’’ EOS for a (nonexotic) neutron star interior
within general relativity, the results in Table III imply
" & 23:8M2
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This bound should be compared to the bound on "

that comes from requiring the existence of black hole
solutions in the theory [48,53]. For # ¼
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, this require-
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where MBH is the black hole mass. The observation of
black holes withMBH % 8M# (such as Cyg X1) constrains
" & 44M2

#. The constraints on " coming from observa-
tions of compact stars (cf. Table III) are already smaller by
a factor&2 than those coming from the existence of stellar
black holes, and they could become even more stringent in
the near future.
We may hope that future observations of the moment of

inertia could place even tighter bounds on the theory.
Unfortunately this seems unlikely. To understand why,
we can either look at the bottom right panel of Fig. 1 or
at Fig. 6, where we show the moment of inertia for the APR
EOS (normalized by its value in general relativity) as a
function of "# for fixed values of the stellar mass. As it
turns out, for values of "# smaller than those listed in
Table III, the moment of inertia can deviate from the
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the small !c limit and for nonrotating models. Only the combi-
nation "# is bounded, due to the approximation ! ' 1 (cf.
Eq. (29)). In the region above the dotted lines no compact star
solution can be constructed (cf. Eq. (31)). In the region above the
thick lines (marked as ‘‘RI,’’ Radial Instability), static configu-
rations are unstable against radial perturbations (cf. the main text
for details). Markers indicate the maximum central density of
radially stable stars in general relativity.

TABLE III. Constraints on the EDGB parameters from an
observation of a nonrotating neutron star with mass M. For the
values of M we consider, constraints using the Causal EOS
would allow values of "# larger than 100M2
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value in general relativity for the APR EOS at fixed values of
the gravitational mass. Curves terminate at the bounds listed in
Table III (corresponding to the filled circles). The deviations
from general relativity are always smaller than 5%.
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Best	  bound	  on	  α	  already	  comes	  from	  NSs,	  not	  BHs!	  
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FIG. 1. The gravity-theory degeneracy problem. The mass-
radius relations in di↵erent modified theories of gravity for
EOS APR [15]. Masses are measured in solar masses, and
radii in kilometers. The theory parameters used for this
plot are: ↵ = 20M2

�

and �2 = 1 (Einstein-dilaton-Gauss-
Bonnet [16]); c14 = 0.3 (Einstein-Aether [17]); � = �4.5
(scalar-tensor theory [18]) and  = ±0.005 (Eddington-
inspired-Born-Infeld gravity [19]). Even if the high-density
EOS were known, it could be hard to distinguish the e↵ects
of competing theories of gravity on the bulk properties of NSs.

using the PN approximation, both in GR [32–35] and in
modified theories of gravity, such as scalar-tensor theory
[36, 37]. To our knowledge, after some early work that
will be discussed below [38–40], the investigation of com-
pact stars within the PPN approximation has remained
dormant for more than thirty years. In the intervening
time the PPN parameters have been extremely well con-
strained by Solar System and binary pulsar observations
at 1PN order (see [41] for a review of current bounds).

In this paper we build a phenomenological “post-TOV”
framework by considering 2PN corrections to the TOV
equations. Our recipe to look for post-TOV corrections
is, at heart, quite simple: from a suitable set of PPN
hydrostatic equilibrium equations we isolate the purely
non-GR pieces. These PPN terms are subsequently
added “by hand” to the full general relativistic TOV
equations, hence producing a set of parametrized post-
TOV equations (cf. [42] for a similar “post-Einsteinian”
parametrization in the context of gravitational radiation
from binary systems). The formalism introduces a new
set of 2PN parameters that are presently unconstrained
by weak-field experiments, and that encompass the dom-
inant corrections to the bulk properties of neutron stars
in GR in a wide class of modified gravity theories.

The plan of the paper is as follows. In Section II we in-
troduce the PPN formalism and review previous applica-
tions to relativistic stars (in particular work by Wagoner

and Malone [38] as well as Ciufolini and Ru�ni [39]). In
Section III we develop the post-TOV formalism to 1PN
order (where all parameters are already constrained to
be very close to their GR values by Solar System and
binary pulsar experiments), and then to 2PN order. We
also show the equivalence between the 2PN post-TOV
equations and general relativity with a gravity-modified
EOS under a minimal set of reasonable assumptions. In
Section IV we present some numerical results illustrating
the relative importance of the di↵erent post-TOV cor-
rections. Some technical material is collected in three
appendices. Appendix A gives details of the dimensional
analysis arguments used to select the relevant set of 2PN
post-TOV coe�cients. In Appendix B we present a brief
summary of relativistic Lane-Emden theory, which is use-
ful to support analytically some approximations made in
the construction of our formalism. Finally, Appendix C
shows that certain integral potentials appearing at 1PPN
order in the stellar structure equations (namely, the grav-
itational potential U , the internal energy E and the grav-
itational potential energy ⌦) can be approximated by lin-
ear combinations of non-integral potentials, so these in-
tegral potentials are “redundant” and can be discarded
when building our post-TOV expansion.

A. Executive summary

Since this paper is rather technical, we summarize our
main conclusions here. The core of our proposal is to
use the following set of “post-TOV” equations of struc-
ture for spherically symmetric stars (from now on we use
geometrical units G = c = 1):
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2
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(2d)

Here r is the circumferential radius, m is the mass func-
tion, p is the fluid pressure, ⇢ is the baryonic rest mass
density, ✏ is the total energy density, and ⇧ ⌘ (✏�⇢)/⇢ is
the internal energy per unit baryonic mass. A “GR” sub-
script denotes the standard TOV equations in GR; �i,⇡i

[Glampedakis+, 1504.02455] 
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where the authors pointed out an additional relation between the equatorial radius
for rotating configurations and the radius for nonrotating configurations.
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Figure 4.9. (Top) Universal relation between the dimensionless moment of inertia Ī and the
dimensionless tidal Love number �̄

(tid) for various EOSs (APR [519], SLy [520], LS220 [523],
Shen [521, 522], PS [542], PCL2 [543] and the n = 1 polytropic EOS for NSs; SQM1-3 [543] for
QSs), together with a fitting curve (solid). The top x-axis shows the corresponding NS mass for the
APR EOS. The parameter varied along each curve is the NS or QS central density, or equivalently
the stellar compactness, with the latter increasing to the left of the plots. (Bottom) Fractional errors
between the fitting curve and numerical results. The EOS-independence holds within a few percent
accuracy. [From [25].]

Yagi and Yunes [25, 163] found new universal relations among macroscopic
quantities that characterize slowly and uniformly rotating unmagnetized NSs and QSs.
If M is the mass of a nonrotating model and � = J/M2 the dimensionless spin of the
star, the universal relations connect the following three quantities: the normalized
moment of inertia Ī = I/M3, the normalized tidal Love number (a measure of stellar
deformability) �̄ = �/M5 and the normalized quadrupole moment Q̄ = Q(M3�2).
For example, Figure 4.9 shows the “I-Love” relation. These “I-Love-Q” relations are
remarkably independent of the EOS – more so than the relations listed earlier⇤.

Pappas and Apostolatos [26] studied the relation between the NS current
octupole and mass quadrupole moments and found that it is insensitive to both,
the EOS and the NS spin. Stein et al. [550] confirmed and extended this finding by

⇤ Several works relaxed some of the assumptions made in the original papers. The universality was first
confirmed in [544] using a wider range of EOSs. Maselli et al. [384] studied the I-Love relations for
merging binary NSs, finding small deviations (⇠ 10%) from the relations that are valid for isolated
NSs. Haskell et al. [545] found that universality holds also for magnetized NSs, as long as the
magnetic fields are smaller than ⇠ 1012G and the spin periods smaller than 0.1s. Doneva et al. [546]
relaxed the slow-rotation approximation. Using the RNS code [547], they found that the I-Q relation
is spin-dependent, and that for a fixed spin frequency, the universality only holds for a subclass
of NS EOSs, concluding that the universality is lost for rapidly rotating NSs and QSs. However,
subsequent work [26, 27, 548] showed that the universality is still preserved for fixed dimensionless
spin parameters. Finally, Martinon et al. [549] investigated universality for the nonbarotropic EOSs
typical of proto-NSs. Deviations from universality can be as large as ⇠ 30% in the early stages of NS
formation, but they decrease as soon as the entropy gradients smooth out.

I-‐Love-‐Q	  and	  three-‐hair	  rela+ons	  could	  help	  tell	  theories	  apart	  

Are	  we	  tes+ng	  the	  EOS	  or	  gravity?	  Universal	  rela+ons	  



Issues:	  
In	  most	  theories	  other	  than	  dynamical	  Chern-‐Simons	  	  

(scalar-‐tensor,	  EdGB,	  EiBI)	  universal	  rela+ons	  same	  as	  in	  GR:	  	  
see	  e.g.	  Mojica’s	  talk	  

	  

R2,	  Lorentz-‐viola8ng	  theories:	  universal	  rela8ons	  not	  studied	  

Massive	  gravity,	  general	  Horndeski:	  no	  studies	  of	  stellar	  structure	  at	  all!	  
	  

All	  theories	  in	  one	  sweep?	  post-‐TOV	  

Are	  we	  tes+ng	  the	  EOS	  or	  gravity?	  Universal	  rela+ons	  
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automatically yield the other two quantities, regardless of the uncertainty in the EOS.
For instance, the tidal Love number � may be measured with future GW observations
(see Section 7.4.1), and such a measurement would give information on I and Q.
On the nuclear physics front, the universal relations allow us to break degeneracies
among parameters in NS observations. For example, Psaltis et al. [555] showed that
the X-ray pulse profile emitted by hot spots on the NS surface depends not only
on the NS mass and radius, but also on its moment of inertia, quadrupole moment,
eccentricity, etcetera. By using the universal relations reported in [556], including
the I-Q relation, one can eliminate some of the model parameters. This breaks
degeneracies in parameter estimation and may allow future X-ray satellites such as
NICER [557] and LOFT [392, 558] to measure the NS mass and radius within ⇠ 5%
accuracy [483], as long as systematic errors are under control [559].

Universal relations in other theories of gravity and tests of GR. In the context of this
review, the I-Love-Q and “three-hair” relations are interesting because they can break
the degeneracy between the uncertainties in nuclear and gravitational physics, and
allow us to perform strong-field tests of gravity with NSs. Since in general the relations
depend on the underlying gravitational theory (but see below for caveats), if one can
measure any two of the I-Love-Q quantities independently, one can in principle perform
a model-independent consistency test of GR or test a specific alternative theory [25].
Model-independent tests can also be obtained by measuring the first four multipole
moments, i.e., mass, angular momentum, mass quadrupole and spin octupole [26].

Figure 4.11. Left panel: The I-Love relation in dCS gravity for various EOSs. The shaded region
represents a hypothetical error box in the I-Love plane resulting from independent measurements of
the moment of inertia and of the tidal Love number (the black asterisk marks the hypothetically
measured values). The black solid line shows the I-Love relation in GR. The top axis shows the NS
mass M⇤ for the Shen EOS. An alternative theory is consistent with the measurement only if the
modified I-Love relation passes through the error box. Right panel: Love-compactness relation in
GR for various EOSs. The shaded region represents a hypothetical measurement error box in the
Love-compactness plane. Different NS EOSs are consistent with the error box, and therefore it may
be possible to carry out tests of GR (this conclusion does not apply to QSs). [From [25].]

As an example, Refs. [25, 163] studied the I-Love-Q relations in dCS gravity [78,
239,560], whose action is give by Eq. (2.26). Corrections to the NS moment of inertia
and quadrupole moment were calculated in [40, 161] and [162] by constructing slowly
rotating NS solutions in dCS gravity that are valid to linear and quadratic order in the
spin, respectively (the ` = 2 electric tidal Love number is the same as in GR [513]).
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Main	  idea:	  augment	  the	  TOV	  equa8ons	  by	  adding	  1PN	  and	  2PN	  terms	  
with	  arbitrary	  coefficients	  built	  out	  of	  the	  available	  fluid	  parameters:	  
	  
	  
1PN-‐order	  terms	  follow	  from	  the	  standard	  PPN	  expansion:	  
	  
	  
	  
Tightly	  constrained!	  
2PN-‐order	  terms	  obtained	  by	  dimensional	  analysis:	  
	  
	  
	  
Regularity	  at	  surface	  +	  
	  

Field	  equa8ons	  linear	  in	  	  
stress-‐energy	  tensor:	  

The	  post-‐TOV	  formalism	  

• This is a formalism for relativistic stars in spherical symmetry                            
(i.e. no rotation), not a full-fledged theory of gravity. 

• Main idea:                                                                                                                
augment the General Relativistic TOV stellar structure equations by 
adding 1PN and 2PN corrections with arbitrary coefficients.                          
These terms are to be built out of the available parameters:

• The hydrostatic equations for the pressure p(r) and mass function m(r) 
take the symbolic form:

Recipe for a “post-TOV” formalism
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dr
=
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◆

GR

+ dm
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GR

+{ PN corrections }, { PN corrections }

p, ⇢, ⇧, m, r ✏ = ⇢(1 +⇧)matter energy density:

• This is a formalism for relativistic stars in spherical symmetry                            
(i.e. no rotation), not a full-fledged theory of gravity. 

• Main idea:                                                                                                                
augment the General Relativistic TOV stellar structure equations by 
adding 1PN and 2PN corrections with arbitrary coefficients.                          
These terms are to be built out of the available parameters:

• The hydrostatic equations for the pressure p(r) and mass function m(r) 
take the symbolic form:

Recipe for a “post-TOV” formalism
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=

✓
dp

dr

◆

GR
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✓
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◆

GR

+{ PN corrections }, { PN corrections }

p, ⇢, ⇧, m, r ✏ = ⇢(1 +⇧)matter energy density:

Looking for post-TOV corrections

• 1PN order: these can be extracted from the existing PPN theory:

• 2PN : use dimensional analysis (excluding the presence of dimensional 
coupling constants):

• Limits on { α, β, θ }: (i) avoid divergence at the  stellar center/surface 
and (ii) assume field equations with a linear dependence on  the stress-
energy tensor:

⇧,
m

r
,
r3p

m

General 2PN term (dimensionless):
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0  ✓  2 or 3

0  ↵  2� ✓ or 3� ✓

⇤1 ⇠

{ geometry } ⇠ 8⇡Tµ⌫

{ geometry } ⇠ (✏+ ⌧p)n

⌧, n = O(1)

[Wagoner-Malone 74, Ciufolini-Ruffini 83] 
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• 2PN : use dimensional analysis (excluding the presence of dimensional 
coupling constants):

• Limits on { α, β, θ }: (i) avoid divergence at the  stellar center/surface 
and (ii) assume field equations with a linear dependence on  the stress-
energy tensor:

⇧,
m

r
,
r3p

m

General 2PN term (dimensionless):

� � �1

0  ✓  2 or 3

0  ↵  2� ✓ or 3� ✓

⇤1 ⇠

{ geometry } ⇠ 8⇡Tµ⌫

{ geometry } ⇠ (✏+ ⌧p)n

⌧, n = O(1)

9

where “geometry” stands for combinations of the met-
ric and its derivatives, and the last equation assumes a
perfect fluid stress-energy tensor. The stress-energy ten-
sor and the right-hand side of Eq. (43) feature ✏ + p =
⇢(1+⇧+p/⇢) and p linearly. It can then be argued that
the solution of the field equations for the metric and its
derivatives will display a

{geometry} ⇠ (✏+ ⌧p)n ⇠ ⇢

n

✓
1 +⇧+ ⌧

p

⇢

◆n

(44)

dependence with respect to the fluid variables (where ⌧

and n are O(1) numbers). Such a solution should lead to
pressure-dependent PN terms of the form:

PN term ⇠ (r2⇢)n�1

✓
p

⇢

◆k

, k = n, n� 1, . . . (45)

where one ⇢ factor has been removed and absorbed in the
Newtonian prefactor of the structure equations, while at
the same time the r

2 factor has been added in order to
produce a dimensionless quantity. A key observation is
that the form (45) assumes a theory that does not de-
pend on dimensional coupling constants. Now, accord-
ing to (45) the highest negative power of ⇢ corresponds
to k = n, which means that the scaling with respect to
the density should be:

PN term ⇠ ⇢

�
, � � �1 (46)

Based on these arguments, we deem acceptable those PN
terms which scale with ⇢ as in (46). This choice is also
consistent with the previous PPN formulae, see Eqs. (13).
A similar argument can be used to exclude terms with
negative powers of p and ⇧3.

Equation (39) and the top row of Eq. (41) represent
a large set of 2PN terms emerging from the expansion
of the TOV equation and from products of the various
known 1PN terms. This set is large but not necessar-
ily complete. Inevitably, a systematic approach to the
problem of “guessing” 2PN terms should involve dimen-
sional analysis. To improve readability we relegate our
dimensional analysis considerations to Appendix A, and
here we only quote the main result. The most general

form for 2PN order terms is given by the dimensionless
combination:

⇤2 ⇠ ⇧✓(r2p)↵(r2⇢)�
⇣
m

r

⌘2�2↵���✓
, (47)

3 A related argument for excluding high powers of 1/⇢ is the fol-
lowing. By virtue of the field equations, the Ricci scalar is usu-
ally proportional to the energy density of matter (at least in
the Newtonian limit, if the modified theory reproduces GR in
the weak field regime): R ⇠ ⇢. If inverse powers of ⇢ are pro-
duced by gravity modifications, they should therefore originate
from terms ⇠ 1/Rn in the action of the theory. These terms are
usually associated with ghosts or instabilities [54], and therefore
their presence is problematic.

where ↵, �, ✓ are integers with

� � �1, (48)

while di↵erent bounds on ✓ and ↵ apply to the two hy-
drostatic equilibrium equations:

dp

dr

: 0  ✓  2, 0  ↵  2� ✓, (49)

dm

dr

: 0  ✓  3, 0  ↵  3� ✓. (50)

The lower bounds on the three parameters ↵, �, ✓

are dictated by the same considerations discussed below
Eq. (41), namely, regularity at the surface and consis-
tency with the fact that gravitational field equations of
the general form (43) are unlikely to generate negative
powers higher than 1/⇢. The upper bounds on ↵ and
✓ are imposed by the regularity at r = 0 of the stellar
structure terms arising from ⇤2 (see Appendix A).
From the general expression (47) we can reproduce all

previous 1PN and 2PN terms and generate an infinite
number of new ones. This possibility could have been
a fatal blow to our post-TOV programme. Fortunately,
the day is saved by the fact that the magnitude of ⇤2

decays rapidly throughout the star as � increases. This
trend is clearly visible in the numerical results shown in
Fig. 3 (see discussion below).
For all practical purposes these results imply that the

first few members of the � = �1, 0, 1, ... sequence are
su�cient to construct accurate post-TOV expansions. A
sample set of such dominant 2PN terms is:
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. (51)

This set is markedly larger than the previous sets (39)
and (41) (whose acceptable terms form a subset of the
new set), but a complete post-TOV formalism would have
to include all (or almost all) of these terms, with twice
the number of free coe�cient in the dp/dr and dm/dr

equations. Fortunately, as it turns out, the same job
can be done with a much smaller subset of 2PN terms.
This is possible because the various 2PN terms can be
divided into five “families”, each family comprising terms
with similar profiles. When incorporated in the post-
TOV equations, terms belonging to a given family lead
to self-similar modifications in the mass-radius curves for
a given EOS.
Insight into the behavior of the ⇤2(↵,�, ✓) terms can

be gained by direct numerical calculations of their radial
profiles in relativistic stars. We carried out such calcula-
tions for a variety of realistic EOSs as well as relativistic
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Post-TOV structure equations (I)
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Post-TOV structure equations (II)

dp

dr
=

✓
dp

dr

◆

GR

� ⇢m

r2

dm

dr
=

✓
dm

dr

◆

GR

+ 4⇡r2⇢

P2 = ⇡1
m3

r5⇢
+ ⇡2

m2

r2
+ ⇡3 r

2p+ ⇡4
⇧p

⇢

M2 = µ1
m3

r5⇢
+ µ2

m2

r2
+ µ3 r

2p+ µ4
⇧p

⇢
+ µ5 ⇧

3 r

m

• 2PN-order corrections: use just one representative term per family, then 
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Gravity-‐theory	  degeneracy	  and	  the	  “post-‐TOV”	  expansion	  
3

FIG. 2. 2PN-order post-TOV corrections on the mass-radius curves. We show the modification induced by di↵erent families of
post-TOV terms on the general relativistic mass-radius curve, assuming the APR EOS. Left to right and top to bottom, the
di↵erent panels show the e↵ect of the pressure terms, proportional to ⇡i (i = 1, . . . , 4), and of the mass terms, proportional to
µi (i = 1, . . . , 5).

consequently P2,M2 should be viewed as describing the
dominant (significant) departure from GR.

Each of the two combinations P2 and M2 involves no
more than five dimensionless 2PN terms, but as we show
in Section III B these terms are representative of five
distinct “families” consisting of a large number of 2PN
terms. Each family is defined by the property that all of
its members lead to approximately self-similar changes in
the stellar mass-radius curves when included in P2,M2.
In other words, as we verified by numerical calculations,
we can account for several terms belonging to the same
family by taking just one term from that family (either
the dominant one or, when convenient, a much simpler

subdominant one) and varying the corresponding post-
TOV coe�cient ⇡i or µi.

The qualitative e↵ect of each of the 2PN-order post-
TOV terms on the mass-radius relation is illustrated in
Fig. 2. The values of the ⇡i and µi coe�cients in each
panel of this figure were chosen with purely illustrative
purposes, i.e., we chose these coe�cients to be large
enough that they can produce visible deviations on the
scale of the plot. A first noteworthy feature is that pres-
sure terms typically induce corrections that are about an
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• The post-TOV equations can also be mapped onto an “effective” GR 
formulation:

• Gravity-shifted effective EoS:

• Effective interior metric: 

Post-TOV as “effective GR” 
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The	  post-‐TOV	  equa8ons	  have	  an	  effec8ve	  GR-‐like	  formula8on:	  
	  
	  
	  
	  
	  
	  
	  

with	  a	  gravity-‐modified	  effec8ve	  EOS	  
	  
	  

	  
and	  an	  effec8ve	  interior	  metric	  

• The post-TOV equations can also be mapped onto an “effective” GR 
formulation:
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Neutron	  stars:	  possibly	  best	  astrophysical	  laboratory	  for	  strong	  gravity:	  	  
•  large	  curvatures	  
•  tests	  of	  gravity/maRer	  coupling	  
	  

“Theory	  of	  theories”:	  terms	  of	  order	  R	  and	  R2	  –	  only	  few	  well	  mo8vated	  	  
•  scalar-‐tensor	  

spontaneous	  scalariza8on	  unlikely,	  observables	  must	  be	  close	  to	  GR	  
(but	  anisotropy?	  dynamical	  scalariza8on?)	  

•  tensor-‐mul8-‐scalar	  
mul8scalariza8on?	  AdLIGO	  signatures	  invisible	  to	  binary	  pulsars?	  

•  EdGB	  
strong	  theory	  constraints	  from	  a	  single	  2	  solar	  mass	  measurement!	  
	  

Issues:	  EOS/gravity	  degeneracy,	  gravity	  theory	  degeneracy	  
	  

A	  theory-‐agnos8c	  post-‐TOV	  formalism	  
	  to	  do:	  M(R)	  curves,	  redshi^,	  cooling,	  surface	  emission	  from	  bursters	  	  
	  Slow	  rota8on,	  universal	  rela8ons,	  break	  degeneracies?	  

Summary	  


