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Testing strong-field gravity

| don’t really need to explain here why we need to test strong-field gravity

One century after its formulation,
GR passed all observational and experimental tests with flying colours,
but these tests only probe the weak-field regime of gravity.

The strongest gravitational field probed in the solar system is that at the surface of
sun (light deflection), for which gravitational redshift and spacetime curvature are

~ 10728 em 2
‘R@C2 ‘RS@C2

The most accurate test in solar system is probably that of the post-Newtonian
parameter Y from Cassini spacecraft, with an accuracy of ~10-.

Binary pulsar tests involve masses Mg ~ Mg and distances similar to g

therefore they generally test the same regime as solar system test.

(with exceptions: in some cases strong-field phenomena may affect
the motion of binary pulsar, e.g. spontaneous scalarization;
but testing these very specific phenomena is not the same thing as
testing the strong-field regime of gravity)
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Testing strong-field gravity

Parameter space of strong gravity
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Accreting black holes

GROJ1655—40
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Picture by Rob Hynes, Cambridge

Quasi-periodic oscillations (QPOs) observed in the X-ray flux from accreting BHs
are associated with phenomena occurring near the BH horizon.
Therefore, they are potentially a probe of strong gravity!

Presently, the accuracy of QPO measurements is not enough to test gravity:
frequencies known at ~1 G with1-2% relative errors (for RXTE)

Leonardo Gualtieri One Hundred Years of Strong Gravity Lisbon, 10-12 June 2015



Accreting black holes

Future very large-area X-ray detector: LOFT

(proposed as an ESA M-class mission,no/\.\wmd:ekez@n)

rejected from M4
evaluation
few days ago!

With its ~10m? effective area,
it will be able to measure QPO frequencies with very high precision,
up to ~I5 times that of RXTE.

This, together with gravitational wave detectors,
could allow tests of GR in the strong-field regime
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Accreting black holes

We shall consider one of the main QPO model,
the relativistic precession model (RPM) (stella, Vietri, *98,°99)

In this model, a blob of matter composing the disk moves on a circular, equatorial
orbit hardly interacting with the surrounding matter.

The orbit is a geodesic of the BH spacetime (i.e., assuming GR, the Kerr solution)
and the X-ray emission is modulated by the azimuthal (v),
periastron (Vper) and nodal (Vnod) frequencies where
Vper = Ve - Vr Vnod = Vg - VO

Vr and Vg are the epicyclic frequencies of the geodesic,
i.e., proper oscillations modes for small displacements or, 0¥
from the circular, equatorial geodesic.

Azimuthal and epicyclic frequencies carry the imprint of the spacetime metric.
If they are emitted near the inner region of the disk (i.e., near the ISCO)
they carry the imprint of the strong-field region of the BH spacetime.
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Accreting black holes

This model was used, for instance, in Motta et al, MNRAS,’14aq,*I4b
where the observations from the BH binaries XTE J1655-40, XTE |1550-164

from which a triplet of QPO, emitted at a certain rem, was observed,
were used to extract the mass M and the angular momenta |=M?a" of the BHs.

Under the assumptions:

(i) The RPM describes accurately the QPOs
(i) GRis the correct theory of gravity, thus the metric is the Kerr solution

The azimuthal and epicyclic frequencies are:
GR _ 1 M1/2
@ 2 1r3/2 ;- q* M3/2

v

6M M3/2 M2\ 2
GR . GR 2
v, — VSO (1 — T + 8CL* T3/2 — SCL* 7“—2>
1/3/2 172\ M2
GR __ . GR * *x 2
V@ == ch (1 — 4CL 7“3/2 —|— SCL T—2>

Using these expressions, the observed values of the QPO triplet yield
the values of the three quantities M,a",rem.

This is not a test of GR, but...
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Accreting black holes

LOFT is expected to measure more QPO triplets from the same BH binary
Vi(p ’ Viper ,Vinod |= I ,2,. e oy

We would then measure 3n quantities,
with (in GR) n+2 unknowns M, a", riem

The redundancy (occurring as n>1) would allow to test GR!
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Testing GR with astrophysical observations

How can we test GR with astrophysical observations!?
(see e.g. Berti et al., arXiv:1412.3473, submitted to CQG)

One could devise a phenomenological parametrization of the BH spacetime
(bottom-up approach) but present parametrizations are impractical.

We shall instead follow a top-down approach:
consider modifications of GR,
possibly inspired by fundamental physics considerations,
and work out predictions, to be tested against observations.
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Einstein-Dilaton Gauss-Bonnet theory

We tested GR against EDGB gravity:
Gauss-Bonnet invariant R&g = Rags R — 4R, R’ + R?
is included in the action, coupled with a scalar field ¢

1 4 1 ac?
S = 5 /d xyv/—qg | R — iﬁuqb(?“qb—l— TRGB
The most natural way to modify the strong-field/high-curvature regime of gravity

is to include in the action a quadratic term in the curvature

The Gauss-Bonnet invariant is a total derivative, thus it has to be coupled to ¢

This is the only combination giving 2" order field equations, avoiding instability

Scalar-tensor theories without quadratic terms in the curvature do not affect
generally the strong-field/high-curvature regime; stationary BHs in these theories
satisfy no-hair theoremes, i.e., are the same as in GR

Both features are string-inspired: the scalar field can be seen as the string dilaton;
Gauss-Bonnet can be seen as the first term in an expansion in all curvature
invariants and their powers, as suggested by low-energy effective string theory

Implicit assumption: there is a new scale >> Planck scale: &!? ~ km
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Einstein-Dilaton Gauss-Bonnet theory

We tested GR against EDGB gravity:
Gauss-Bonnet invariant R&g = Rags R — 4R, R’ + R?
is included in the action, coupled with a scalar field ¢

Field equations:
1 1
G = 5 PO, — Zgwﬁa¢6o‘¢ —ak,, ,

1 o 9
ﬁau(\/?a“@ = _Z€¢RGB7

Since field equations are 2" order, EDGB gravity can be considered
either as an effective theory (¢/M?<<1) or as a non-effective theory (& finite)
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Einstein-Dilaton Gauss-Bonnet theory

Solution of the EDGB field equations

describing stationary, slowly rotating BHs
(Kanti et al. ’96; Pani & Cardoso ‘09)

only exists for

@
0< 575 < 0.691

We considered this entire range (=> EDGB gravity as a non-effective theory)

Note that o is dimensionful!

The dimensionless parameter is C=0/M? => larger effect for smaller BHs (i.e., large

curvature)
Best observational bound: 0(=47My?2

(Yagi, PRD ’14) from orbital decay of LMXRBs
is weaker than theoretical bound when M=8.2M¢

Spacetime metric (at first order in the rotation rate):

2

d
ds® = —f(r)dt* + ?:“) + r*(d0® + sin® 0dp?) —2r? sin? Qw(r)dtdep .

f(r), g(r), wW(r) solution of a system of ordinary differential equations in r
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Testing gravity with accreting BHs
A.Maselli, L.G., P.Pani, L.Stella, V.Ferrari, ApJ 801,1,2015

We computed the azimuthal and epicyclic frequencies, and then Ve, Vper,Viod
for a stationary, slowly rotating EDGB BH, as functions of M,a’,r

Assuming as fiducial values those of XTE 1655-40

(for which M, a* were extracted within GR): M=5.3 Mo, 0=<a*<O0.l, r=1.1 risco,
. . VEDGB . V-GR
we found that the relative differences ¢ = —+—Fr— i = ¢, r,0,nod, per

Vi

reach values as high as ~1-4%

This much larger than the expected sensitivity of LOFT,
which should measure QPO frequencies with a fraction of % error!

However, in order to find out whether it would actually be possible
to test gravity with LOFT,
we had to perform a more refined analysis.
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Testing gravity with accreting BHs

Let us assume that two different QPO triplets
are measured with LOFT expected sensitivity.
We performed the following analysis:

We chose “true” (supposed to be unknown by the observer) values of M,a*, X

Using EDGB equations, we generated two sets of frequencies

Vrefl =(V(p, Vper, Vnod) | Vref2=(V(p, Vper, Vnod)2 ’
corresponding to two values of r/risco.

These are the measured triplets, with LOFT uncertainties (O, Oper, Onod).

We imagined that an ingenuous observer interpret these data
as generated by a Kerr BH, finding the corresponding (Mi,a™,r) , (M2,a™2,1r2).
If x=0 we expect M|=My, a™|=a™,, but if X+#0, we expect M|#My, a*#a™*,

To quantify this discrepancy, we used a Monte Carlo approach, generating
Gaussian distribution of triplets with standard deviation (G, Oper, Onod).

The corresponding variables M|,M,, a*|,a*; have also Gaussian distributions
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We also computed the ¥? variable for
AM=M|-M, Aa*=a*|-a*; :

nlo nlo
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Testing gravity with accreting BHs

Adopting a 30 threshold, for a BH spinning as fast as a*=0.2
we could detect discrepancies between GR and EDGB gravity for

0.418<C<0.619 (C=x/M?)
If no discrepancies are detected, we would rule out this range of «.

Accreting BHs are then a promising testbed for gravity,
since they can probe its strong-field/high-curvature regime!

Maselli et al. Ap] 2015 was just a preliminary study:

o Since BHs in EDGB gravity (with finite ®/M?) were only known at O(a*)
we considered a* up to 0.1-0.2, but actual BHs rotate more rapidly, and
BHs with large a* are more sensitive to strong gravity (smaller ISCO)

This study assumed a particular QPO model, the RPM.
Other models should be included in the analysis
(e.g., the epicyclic resonance model of Kluzniak and Abramowicz) .
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Not-so-slowly-rotating EDGB BHs

A. Maselli, P. Pani, L.G., V. Ferrari, in preparation

EDGB BHs at 2" order in a* were already known in the T<<I case
(Ayzenberg & Yunes, PRD 90, 044066 ‘14)

but we need to consider finite values of T (up to ~0.691).

Spherically symmetric background, O(a*?) perturbations:
w = w(r)Si(d),

ds® =—eT[1 + 2h(r, 0)]dt> + e [1 + 2m(r, 6)]dr? i = fo(r) + ha(r)Palcosd) ,
m = mg(r) + ma(r) P2 (cosf) ,

2 2 | 2 A 2
+r°[1 + k(r, 0)]|dO° + sin” 6(dp — w(r, 0)dt)*] k= Fo(r) + k() Pa(cosh) |
D(r) = ¢(r) + ¢o(r) + ¢2(r) Pz(cos0)

A:(lo)mg + .A )mO + A(O)w + A(O) =0 B(lz)ké + B(Qz)kg + B? )hg + BEL )m2 +

Field equations Bloyhy + B(mmo + B w? + B(O) =0 + B(Q)w’2 N 3(2) ~0
O(a™): Al By + Ay Ky + Ay iy + Ay iy + O+ Ely by + Edpy b + €y = 0

+ ./4(2 w/2 + A(Q) =0.

Each of these coefficients is an expression in terms of background quantities

Leonardo Gualtieri One Hundred Years of Strong Gravity Lisbon, 10-12 June 2015



Not-so-slowly-rotating EDGB BHs

Field equations for finite T at 2" order in a* are highly nonlinear,
their numerical resolution is challenging.
We have solved them using a perturbative approach in C, up to O(T/):
calling y=a*, two-parameter perturbative expansion up to O(y2C)

The expression for metric coefficients too long to be shown here, but e.g.

SCO 2 8 ’ o N
7}\4 _ 6—4\/%)(—2—X7+C2(1°4X2_12X_10)10 2 4 (3(2.7x% — 6.6y — 5.1)107% +

+¢*(3.9x% — 5.4y — 3.8)1072 + ¢°(5.0x% — 4.9y — 3.3)1072 +
+ ¢%(6.4x% — 4.8 —3.3)107% 4+ ¢"(8.0x* — 5.1x — 3.4)1072 .

Azimuthal and epicyclic frequencies are given by similar expressions.

At O(y?TC?), we reproduce the results of Ayzenberg & Yunes *1 4
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Not-so-slowly-rotating EDGB BHs

To estimate the truncation errors due to neglecting O(T’) terms,
we compared our solution at first order in the spin
with that of Pani & Cardoso PRD 79, 084031 *09, which is O(y) and exact in C;

05t e Pani & Cardoso ‘09 .
_____ n=7 P -
04f n= e
e o
= 03
Q O
o2} e
/""'
. . 0.1}
Dilatonic .
0.0 -®
charge a0f
25t
< 20
~ 15} ]
Yoo :
5¢ ,:,/’, -
Ok 4 P s i
0.1 0.2 0.3 0.4 0.5 0.6 0.7
alM?
X €en=2(%) €n=4(%) €n=6(%) €en=7(%) X €n=2(%) €n=4(%) €n=6(%) €en=7(%)
/M 0 5.90 4.45 3.72 3.48 T /M 0 1.33 0.52 0.24 0.17
Ttsco/M | 0 1.00 0.58 0.43 0.39 Ttsco/M | 0 0.32 0.093 0.038 0.026
0.05 1.11 0.65 0.49 0.44 0.05 0.37 0.12 0.055 0.042
0.10 1.23 0.72 0.54 0.49 0.1 0.42 0.14 0.074 0.059
Mwgltsco| 0 1.36 0.79 0.59 0.53  Muwylisco| O 0.44 0.13 0.053 0.036
0.05 1.56 0.95 0.72 0.66 0.05 0.56 0.23 0.14 0.13
0.10 1.88 1.22 0.98 0.91 0.1 0.80 0.44 0.35 0.33
Mwg|isco |0.05  1.53 0.92 0.69 0.63 Mwg|1sco |0.05  0.54 0.20 0.12 0.10
0.10 1.78 1.13 0.88 0.81 0.1 0.71 0.36 0.27 0.25
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Not-so-slowly-rotating EDGB BHs

How does the spin affect the magnitude of the EDGB corrections!?

Y o00ef — X0
N —x=0.2
“s __x=04
3 0.04} X=Y
> x=0.6
3
o 0.02f
3
0.00 ;
5| 0.06}
X
U)CD
3 0.04
~—
o
O, 0.02}
3
0.00} : , , . . . ]
0.1 0.2 0.3 0.4 0.5 0.6 0.7

a/M?

As expected, EDGB corrections are larger
for larger values of the spin parameter ¥
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Conclusions

Accreting, stellar-mass BHs can be used to test
the strong-field, high-curvature regime of gravity.
The QPO of their X-ray flux are a sensitive probe of their inner region.

We have considered the RPM of QPOs, in which they correspond to the
azimuthal and epicyclic frequencies of circular geodesics near the ISCO,

and EDGB gravity, probably the simpler best motivated GR deviation which
modifies its strong-field regime

To begin with, we have considered slowly rotating BHs.

We found that a detection of QPOs with the expected sensitivity of the

proposed ESA M-class mission LOFT would set strong constraints on the
parameter space of this theory

We are now extending our study to BHs at 2" order in the rotation rate.
At higher values of the rotation rate, circular stable geodesics can probe a

region with higher curvature; thus, the EDGB deviations are stronger, and the
QPO-based test is more effective

Leonardo Gualtieri One Hundred Years of Strong Gravity Lisbon, 10-12 June 2015



