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• The origin of the Bekenstein-Hawking entropy is still one of the 
greatest mysteries in the modern theoretical physics.

• Since BHs are vacuum solutions, while our naïve concepts of  “entropy” 
are based on quantum properties of matter, it would be useful to study 
whether black hole thermodynamics could emerge when one 
compresses matter within its own gravitational radius.

• One of the simplest systems of collapsing matter is the infinitesimally 
thin shells where self-gravitating matter is confined, placed in an 
otherwise vacuum spacetime.

Bekenstein (73), Bardeen, Carter & Hawking (73) , Hawking (75)

A Thin Shell Approach to BH Thermodynamics
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𝐴+:  Area of the event horizon
𝑐 = ℏ = 𝑘𝐵 = 1



• The previous studies on thermodynamics of a thin matter shell have 
recovered the Bekenstein-Hawking entropy, when the shell is taken to 
its gravitational radius and the temperature of the shell coincides with 
Hawking temperature.

Martinez (96)

- Outer Reissner-Nortstroem and inner Minkowski in the (3+1) dimensions.
Lemos, Quinta and Zaslavskii (15)

- Outer (non-rorating) BTZ and inner AdS in the (2+1)-dimensions.
Lemos and Quinta (14)

- Outer Schwarzschild and inner Minkowski in the (3+1) dimensions.

• We study the thermodynamic properties of a thin matter shell in the 
outer rotating BTZ and inner AdS spacetimes in the (2+1) dimensions, as 
the simple analogue of the (3+1)-dimensional Kerr spacetime.
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BTZ Spacetime in the (2+1) dimensions
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ADM mass

Angular momentum

⇔

Banados, Teitelboim & Zanelli (92)

• The exact stationary solution of GR in the (2+1) dimensions with 
negative cosmological constant Λ < 0.

• Similarities with the Kerr solution in (3+1) dimensions

- Uniqueness - Ergo region 𝑟 < 𝑟+
2 + 𝑟−

2
1

2

interesting as the simple analogue of the Kerr spacetime.



A Timelike Thin Shell in the (2+1) Dimensions
• We introduce a timelike thin matter shell located at 𝑟 = 𝑅.

• The outer region (𝑟 > 𝑅) is taken to be the rotating BTZ. 

𝑅 > 𝑟+ ⇒ the shell is always timelike and located outside the horizon.
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• The inner region (𝑟 < 𝑅) is taken to be the (2+1)-dim AdS, so 
that no singularity and horizon are formed inside the shell.

outer inner



• In order to match two regions, the shell at 𝑟 = 𝑅 (and the inner 
region) must corotate with the outer BTZ region
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• We are interested in the quasistatic process and assume that  𝑅 =  𝑅 = 0.

• At the position of the shell 𝑟 = 𝑅,  ℎ 𝐼 𝑅 = 0, and the induced line 

element on the shell is given by  

Poisson (07)

⇒
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Imperfect Fluid on the Shell
• The rotating thin shell is supported by an imperfect fluid

• The local proper mass and angular momentum of the shell

• ADM mass and angular momentum measured in the outer region
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Energy density

Pressure

Angular-momentum 
flux density

Lemos, Lopes and Minamitsuji (15)

⇒ The DEC is violated except for the extremal case. 



Thermodynamcs of a Rotating Matter Shell

• We assume that the shell is in thermal equilibrium with a locally measured 
temperature 𝑇 =  1 𝛽 and entropy 𝑆.  
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• The 1st law of thermodynamics  

Lemos,  Lopes, Minamitsuji and Rocha (15)

• The entropy 𝑆 can then be expressed as a function of the independent 
state variables, the proper mass 𝑀, the area of the shell 𝐴(= 2𝜋𝑅) and 
the angular momentum J.

⇒
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• 𝛽 and Ω play the role of integration factors, which must be specified 
in order to obtain an exact expression of the entropy. However , the 
choice of these function can be specified is constrained by the 
integrability conditions that directly follow from the 1st law. 

• For 𝑀, 𝐽, 𝑝, we use the expressions obtained from the junction conditions.

• The integration of the 1st law to yield 𝑆 𝑀, 𝑅, 𝐽 can be performed
once the equations of state are specified.
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• The redshift function

• The pressure equation of state

• The temperature equation of state

⇒

integration constant

𝑏 𝑟+, 𝑟− is the (inverse) temperature at 

Tolman relation for the thin shell in the BTZ spacetime 
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• The angular velocity equation of state

Integration constant

• In summary,  we have found the three equations of state, 
𝑝 𝑟+, 𝑟−, 𝑅 , 𝛽 𝑟+, 𝑟−, 𝑅 and Ω 𝑟+, 𝑟−, 𝑅 which are necessary to 
determine the entropy of the shell. 

⇒

⇒



The Entropy of the Shell
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• By changing the variable from 𝑀,𝑅, 𝐽 to 𝑅, 𝑟+, 𝑟− with

and substituting the equations of state 𝑝 𝑟+, 𝑟−, 𝑅 , 𝛽 𝑟+, 𝑟−, 𝑅 and Ω 𝑟+, 𝑟−, 𝑅

• The two integration constants must satisfy the integrability condition 

Any choice of 𝑏 = 𝑓 𝑟+
2 + 𝑟−

2 and 𝑏𝑐 = 𝑔 𝑟+
2𝑟−

2

will satisfy the integrability conditions.
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• In generic cases, in order to obtain the specific expression for the entropy, 
we need to choose 𝑏 𝑟+, 𝑟− and 𝑐 𝑟+, 𝑟− .

• The entropy 𝑆 is a function of 𝑟+ and 𝑟− only

and hence a function of 𝑀,𝑅, 𝐽 through 𝑟± 𝑀,𝑅, 𝐽 ,

• Shells with the same 𝑟+ and 𝑟−, namely the same ADM mass 𝑚
and angular momentum 𝐽 but at a different position 𝑅, have the same entropy. 

⇒ Thus an observer measuring 𝑚 and 𝐽 cannot distinguish shells 
with different radius by measuring the entropy. 
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The Thin Shell and the Black Hole Limit 
• As the inverse temperature equation of state 𝑏 𝑟+, 𝑟− , we choose 

(Inverse) Hawking temperature of a BTZ BH 

Constant which depends on the properties of matter 

• There is a family of solutions for the angular velocity equation of state, 
𝑐 𝑟+, 𝑟− which satisfies the integrability condition. Here, we choose 
the particular solution  

which makes the thermodynamic angular velocity, Ω, vanish 
when the shell is pushed to the gravitational radius, 𝑅 → 𝑟+.
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• By substituting these functions into the 1st law, we obtain the differential 
for the entropy of the shell  

• By integrating this, the entropy of the shell is given by 𝑆 = 𝑆0 +
𝛾

4𝐺
𝐴+, 

where 𝑆0 is an integration constant.  Requiring that when the shell is 
absent - or equivalently 𝑀 = 0 and 𝐽 = 0 ⟺ 𝑟+ = 𝑟− = 0 , we fix 𝑆0 = 0,

which shows that entropy of the shell depends on 𝑀,𝑅, 𝐽 only through 𝑟+. 
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• As the shell approaches its gravitational radius, 𝑅 → 𝑟+, quantum effects 
would be inevitably present and their backreaction would invalidate our 
classical treatment. Therefore, we must choose 𝛾 = 1 or 𝑏 = 𝑏+

⇒

When we push the shell to its gravitational radius,
the entropy coincides with the Bekenstein-Hawking entropy.  

• Thus in the case of the nonextremal shells, the Bekenstein-Hawking entropy 
is recovered if the temperature of the collapsing shell coincides with the 
Hawking temperature.



The Extremal Rotating Thin Shells
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• The extremal rotating thin shells 𝑟− = 𝑟+ have very distinct properties.

• The local mass and angular momentum of extremal rotating shells

• The 1st of thermodynamics  𝑣 = Ω𝑅 : the velocity equation of state

Lemos, Minamitsuji and Zaslavskii, in progress

⇒ ⇒
• The integrability condition yields

• The entropy 𝑆 is only the function of the gravitational radius

⇒
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• The velocity equation of state is then given by the integrability condition

• Since for the extremal shell the integrability condition has nothing to do with 
the Tolman relation, the temperature equation of state may be expressed as

• The limit of the extremal shell to the extremal black hole, 𝑅 → 𝑟+ , is taken by 
choosing 𝑏 = ∞ 𝑇 = 0 and 𝑐 = 1 𝑣 = 1 , keeping 𝑏 1 − 𝑐 finite.   

• For the explicit computation of the entropy 𝑏 and 𝑐 must be specified as

• Thus the entropy of the extremal shell can be any well-behaved function of 𝑟+ .   



Summary
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• For a nonextremal shell Bekenstein-Hawking entropy is recovered, when 
the shell is pushed to its gravitational radius and its temperature is taken 
to the Hawking temperature.

• For an extremal shell, the entropy becomes an arbitrary function of 
the gravitational radius.



Thank you.
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