

Causality and black holes in spacetimes with a preferred foliation

Jishnu Bhattacharyya

School of Mathematical Sciences University of Nottingham, UK

VIII Black Holes Workshop, Lisbon, IST, 2015
Based on: arXiv:1509.01558 (w/ M. Colombo & T. P. Sotiriou)

Entertaining LLV theories of gravity

- quantitatively parametrize deviations from local Lorentz invariance in the gravitational sector,
- possibility to construct renormalizable QFT of gravity (e.g. Hořava gravity).

Theories with a preferred foliation

Characteristics of theories (e.g. Hořava gravity) with a preferred foliation:

 \triangleright solutions admit a *special* foliation Σ (*e.g.* a scalar field T has timelike gradient everywhere)

Theories with a preferred foliation

Characteristics of theories (e.g. Hořava gravity) with a preferred foliation:

 \triangleright equations of motion 2nd order in 'time' only w.r.t Σ

modes have higher order dispersion relations w.r.t Σ

$$\omega^2 \propto k^6$$
 , $k \to \infty$.

$$k \to \infty$$

Theories with a preferred foliation

Characteristics of theories (e.g. Hořava gravity) with a preferred foliation:

▶ even at the lowest order (IR), there is an *elliptic* equation which is not preserved under time evolution (i.e. \neq constraint) – instantaneous mode.

* * * *

Theories with special foliations but *without* the above properties *do not admit a preferred foliation* – *e.g.* hypersurface orthogonal Einstein-æther theory.

Causal stucture of LLV spacetimes: why?

- ensure no conflict with the basic principles of causality;
- existence of 'out of the lightcone' propagations and 'instantaneous mode' consistent with the problem of well-posed causal development?
- can black holes exist?

The universal horizon: lots of symmetries

Eling, Jacobson 2006; Barausse, Jacobson, Sotiriou 2011; Blas, Sibiryakov 2011; Barausse, Sotiriou 2013;

Sotiriou, Vega, Vernieri 2014; Berglund, JB, Mattingly 2012; JB, Mattingly 2014.

Preferred foliation \equiv preferred simultaneity

ightharpoonup spacetime with a preferred foliation $= (\mathcal{M}, \Sigma, g_{ab})$

▶ preferred foliation is *ordered*: (i) $p \leftrightarrow \Sigma_p$, (ii) $p \neq q$ have *unique* causal relationship.

Past and future

Asymptotic boundary: §

'Outside region': $\langle\!\langle \mathcal{M} \rangle\!\rangle$

$$\langle\!\langle \mathscr{M} \rangle\!\rangle = J^-(\mathscr{I}) \cap J^+(\mathscr{I})$$

Universal horizon as an event horizon

Universal horizon as a Cauchy horizon

Universal horizon: local characterization

To summarize · · ·

- spacetimes with a preferred foliation has a consistent causal structure,
- ▶ black holes can exist even though Lorentz invariance is not respected; event horizon ≡ universal horizon,
- universal horizon ≡ Cauchy horizon for the 'outside region',
- ▶ in stationary spacetimes with Killing vector χ^a , *local* characterization of universal horizon: $u_a \chi^a = 0$.

Extra slide

