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Preamble
In the wake of the commemorations it is appropriate to pay all homages to
Einstein. He started cosmology, predicted gravitational waves, endeavored in
unifying gravitation and electromagnetism, but never considered black holes.
He could have predicted black holes in 1905, just after special relativity, à la
Mitchell, but didn’t, he was never interested in stars or compact objects.
In 1939 he published a paper in Annals of Physics “On a stationary system
with spherical symmetry consisting of many gravitating masses”. His
argument is inconclusive, since it only shows that stable spinning objects have
to spin faster and faster to stay stable before the point where they collapse. In
the same year, 6 months later, Oppenheimer and Snyder (1939) proved
complete gravitational collapse.
Black holes had to wait for Wheeler and collaborators in Princeton (1950s).
That black holes belong to physics in general, and not only to astrophysics,
we owe to the ideas of Penrose in particular the Penrose process (1969), the
skills of Hawking (1974) and his radiation, and to Bekenstein (1973) with his
black hole entropy. This VIII Black Holes Workshop is a homage to him.



1. Introduction
Entropy is related to degrees of freedom. Matter entropy is related to the
volume, e.g., Sakur-Tetrode entropy (1912), the entropy of a monatomic
classical ideal gas which incorporates quantum considerations
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Black hole entropy is in the area, the Bekenstein-Hawking entropy S = 1
4 A+

in Ap units, (G = 1, c = 1, h̄ = 1, kB = 1). Points to the ultimate degrees of
freedom are in the area not volume. Works of 1970s.
This is well established for nonextremal black holes: thermodynamics of
black holes, Euclidean formulation and path integral approach to statistical
mechanics.
Not so for extremal black holes. The Euclidean formulation shows that S = 0
due to trivial topology (Hawking, Horowitz, Ross 1995, Teitelboim 1995). On
the other hand string theory formulation of extremal black holes shows
S = 1

4 A+ (Strominger, Vafa 1996). There is a problem here.
We use matter to study black hole entropy. Use the simplest form of matter: a
shell. Amazingly, it reflects and gives a solution to the debate.



2. The dynamical and thermodynamic quantities

The study of charged thin shell involves three dynamical variables: the radius
R of the shell, its rest mass M and its charge Q. For thermodynamics we also
need T .
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Find then p, Φ, and S.



2. The dynamical and thermodynamic quantities

Assuming that the shell has a well defined temperature, the first law of
thermodynamics is

TdS = dM+pdA−ΦdQ .

Although all thermodynamical quantities depend on A, M, and Q it is useful
to change to r+ and r−, the gravitational or horizon radius and the Cauchy
radius,

r+(R,M,Q) = m+
√

m2−Q2 ,

r−(R,M,Q) = m−
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is the ADM mass. Define, k as

k(R,r+,r−) =
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R

)
,

usually called the redshift function.



2. The dynamical and thermodynamic quantities

The quantities M and Q can be written in terms of (R,r+,r−),

M(R,r+,r−) = R(1− k) ,

Q(R,r+,r−) =
√

r+ r− .

The area of the shell is
A(R,r+,r−) = 4πR2 ,

and the gravitational area or horizon area is

A+(R,r+,r−) = 4πr2
+ .

It will prove useful to keep the generic functional dependence.

In order for the non-extremal electric charged shell to remain static, its
tangential pressure must have a specific functional form, given by

p(R,r+,r−) =
R2(1− k)2− r+r−

16πR3k
.



2. The dynamical and thermodynamic quantities

The integrability conditions out of first law of thermodynamics assert that the
electric potential Φ

Φ(R,r+,r−) =
c(r+,r−)− 1

R
k

√
r+r− ,

where c(r+,r−) is an arbitrary function, which physically represents the
electric potential of the shell multiplied by its charge, if it were located at
infinity. Additionally, we need the non-extremal shell to have a well defined
electric potential in the horizon limit. This leads to

c(r+,r−) =
1

r+
,

and consequently
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2. The dynamical and thermodynamic quantities

Assuming that the shell has a well defined temperature, the integrability
conditions imposed from the first law of thermodynamics gives

T(R,r+,r−) =
T0

k
,

where T is the temperature at the shell and T0 is the temperature seen from
infinity. Now, we impose

T0 = TH(r+,r−) =
r+− r−
4πr2

+

,

where TH is the Hawking temperature of an electrically charged black hole.
So T(R,r+,r−) =

TH(r+,r−)
k , i.e.,

T(R,r+,r−) =
r+− r−
4πr2

+ k
.



3. Approach to the extremal horizon: The variables that
define the three extremal horizon limits

To study independently the limit of an extremal shell and the limit of a shell
being taken to its gravitational radius, it will prove fruitful to define the
variables ε and δ through the equations

1− r+
R

= ε
2 ,

1− r−
R

= δ
2 .

It is clearly seen that these the variables ε and δ are the good ones to take the
extremal limit. There are however different extremal limits depending on how
ε and δ are taken to zero.
Using the equations above we immediately get that the redshift function is

k(R,ε,δ ) = εδ .

In these variables it depends on ε and δ and not on R.



4. Geometry: The three extremal horizon limits
There are three physically relevant, limits. Let us see the geometry.
Case 1. In this case we do r+ 6= r− and R→ r+, i.e.,

δ = O(1) , ε → 0 .

Thus there is the horizon limit, but there is no extremal limit, the shell
remains nonextremal during the whole process. After the calculations are
done and we have an expression for the entropy we take the δ → 0 limit.
Case 2. In this case we do R→ r+ and r+→ r−, i.e.,

δ =
ε

λ
, ε → 0 ,

where the new parameter λ remains constant and it must satisfy λ ≤ 1 due to
r+ ≥ r−. It means that simultaneously R→ r+ and r+→ r− in such a way that
δ ∼ ε . In other words, the horizon limit is accompanied with the extremal one.
Case 3. In this case we do r+ = r− and R→ r+, i.e.,

δ = ε , ε → 0 .

This corresponds to the extremal shell.



5. Mass and electric charge: The three extremal horizon
limits

Inverting gives
M(R,ε,δ ) = R(1− εδ ) ,

Q(R,ε,δ ) = R
√

(1− ε2)(1−δ 2) .

We can then study the three cases.
Case 1. For r+ 6= r− and as R→ r+, i.e., for δ = O(1) and as ε → 0, we get

M(r+,ε,δ ) = r+ , Q(r+,ε,δ ) = r+ .

Case 2. For R→ r+ and r+→ r−, i.e., for δ = ε

λ
and ε → 0

M(r+,ε,δ ) = r+ , Q(r+,ε,δ ) = r+ .

Case 3. For r+ = r− and as R→ r+, i.e., for δ = ε and ε → 0 we get

M(r+,ε,δ ) = r+ , Q(r+,ε,δ ) = r+ .



6. Pressure, electric potential and temperature: The
three extremal horizon limits

The tangential pressure in terms of the variables ε and δ is

p(R,ε,δ ) =
1

16πR
(δ − ε)2

δε
.

Case 1. For r+ 6= r− and as R→ r+, i.e., for δ = O(1) and as ε → 0, we get

p(r+,ε,δ ) =
δ

16πr+ε
∼ 1

ε
.

So, the pressure is divergent in this case as 1/ε .
Case 2. For R→ r+ and r+→ r−, i.e., for δ = ε

λ
and ε → 0

p(r+,ε,δ ) =
1

16πr+

(1−λ )2

λ
,

The pressure is finite but nonzero in this horizon limit for the extremal shell.
Case 3. For r+ = r− and as R→ r+, i.e., for δ = ε and ε → 0 it is seen from
the equation above p(r+,ε,δ ) = 0 .

The result p = 0 holds in fact at any radius, including the horizon limit.



6. Pressure, electric potential and temperature: The
three extremal horizon limits

In terms of ε and δ the electric potential is

Φ(R,ε,δ ) =

√
1−δ 2

1− ε2

√
ε

δ
.

It is then possible to analyze the three limiting case.
Case 1. For r+ 6= r− and as R→ r+, i.e., for δ = O(1) and as ε → 0, we get

Φ(r+,ε,δ ) = 0 .

Case 2. For R→ r+ and r+→ r−, i.e., for δ = ε

λ
, with λ kept fixed and ε→ 0,

Φ(r+,ε,δ ) = λ , 0≤ λ ≤ 1 .

Case 3. For r+ = r− and as R→ r+, i.e., for δ = ε and ε → 0 it is seen that

Φ(r+,ε,δ ) = 1 .
The extremal shell from the very beginning differs from what is obtained by
the extremal limit from the nonextremal state.



6. Pressure, electric potential and temperature: The
three extremal horizon limits

In terms of ε and δ the temperature is TH(R,ε,δ ) = δ 2−ε2

4πR(1−ε2)2 and so the
local temperature on the shell is thus

T(R,ε,δ ) =
TH

k
=

δ 2− ε2

4πRδε(1− ε2)2 .

Case 1. For r+ 6= r− and as R→ r+, i.e., for δ = O(1) and as ε → 0, we get

T(r+,ε,δ ) =
δ

4πr+ε
∼ 1

ε
.

Case 2. For R→ r+ and r+→ r−, i.e., for δ = ε

λ
and ε → 0,

T(r+,ε,δ ) =
1−λ 2

4πr+λ
.

It remains finite and nonzero. Note a simple formula in this limit p
T = 1

4
1−λ

1+λ
.

Case 3. For r+ = r− and as R→ r+, i.e., for δ = ε and ε → 0, one can relax
condition above in such a way that T0→ 0 but T remains finite.



7. Entropy: The three extremal horizon limits

To obtain the distinct limits for the entropy, one can express the first law of
thermodynamics in terms of the variables (R,ε,δ ), in the quite general exact
form,

dS(R,ε,δ ) = 2π R
(
1− ε

2)2
dR−4π R2

ε
(
1− ε

2)dε .

This equation can be integrated to give

S(R,ε,δ ) = π R2 (1− ε
2)2

.

So, independently of the limit, we get immediately,

S(r+) =
A+

4
,

where A+ is the horizon area. It is the Bekenstein-Hawking entropy. It is
striking that all physical (non-geometrical) quantities depend on ε and δ . The
entropy does not. It implies it is a geometrical quantity.



7. Entropy: The three extremal horizon limits
So
Case 1. For r+ 6= r− and as R→ r+, i.e., for δ = O(1) and as ε → 0, we get
the entropy of a non-extremal charged black hole S = A+

4 . We can now take
the extremal limit δ → 0 and obtain that the entropy of an extremal charged
black hole is S(r+) =

A+

4 , the Bekenstein-Hawking entropy.

Case 2. For R→ r+ and r+→ r−, i.e., for δ = ε

λ
, with λ kept fixed and ε→ 0

we obtain also S(r+) =
A+

4 . We conclude that the entropy of an extremal black
hole obtained through a non-extremal shell by means of the limiting transition
under discussion is equal to the Bekenstein-Hawking entropy.

Case 3. Cannot be handled in this manner and should be considered
separately. This was done before with the result that the entropy is not fixed
unambiguously for a given r+,

S(r+) = a physical well behaved function of r+ .

The equation for the entropy works for cases 1 and 2. In case 3, the ab initio
extremal shell with δ = ε , one is led to the discussion given previously.



8. Summary of the results

A table briefly summarizes our results. It is implied that in all three cases the
horizon limit is taken.

Case p Φ T S Contr. to 1st law
1 diverges ε−1 0 ε−1 A/4 press.
2 nonzero > 0,< 1 nonzero A/4 mass, press. and electric.
3 0 1 nonzero any mass and electric.
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