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Effective metric for a noninear scalar theory

EOM:

“Effective metric”

Background metric

(all  quantities evaluated  at the background solution)

Goulart  and SEPB,  2011

+ eikonal approx. 



In the linear case,  the effective metric reduces to 
the background metric.

In the case of theories with more degrees of freedom there can be 

birefringence and/or bimetricity.                                                      

Goulart  and SEPB,  2009
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From   

the action for the (high-energy) 
perturbations is

IST 2015



CINVESTAV 2014

Linear stability using the effective metric 
(Moncrief, 1980, for a test perfect fluid in potential flux  accreting onto a  
Schwarzschild black hole)

X μ  is a Killing vector of the 
background metric (hence 
of the eff. metric)

͠͠͠   

Integrating in a 3-volume V
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                            Linear stability and      ~E>0
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R

r
s
 : “sonic horizon” 

V
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H2) The perturbations have finite energy:  

H1) 

IST 2015



CINVESTAV 2014

                           Linear stability ~E>0
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Example: Frolov (2004)

Stationary solution + spherical symmetry

“Effective cosmological constant” 
(Arkani-Hamed et al, 2003)

0

EOM

W
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→ 1 for  r → ∞
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We still need to prove that  

0

(only the sign of ψ
,r 
 Is needed)  

Back to stability:  

~E>0

There is only one solution that goes from infinity (with null radial velocity) 
to  r

g 
, and satisfies the condition ψ

,r 
> 0  (Frolov 2004) 

→ The rhs is negative 
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→ The tt, θθ, and ϕϕ components have 
     the right  sign.
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→ The system is linearly stable under high-energy perturbations. 

(C. A. Paz Rivasplata, J. M. Salim, SEPB,  PRD 2014)

To prove that the rr component is negative outside the  horizon:

1) It only has one zero (at the sonic horizon)                                   OK!

2) Its derivative is negative at the sonic horizon:

M rr=3v2+A f −1
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Stability using the effective potential 
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ρ* = ρ*(r) is calculated numerically, using the parametrization 

Tortoise coordinate
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Positivity of the potential is a sufficient condition for linear stability 
 (Wald,  1979).

After a rather long and 
straightforward calculation,

(C. A. Paz Rivasplata, J. M. Salim, SEPB, PRD 2014) 

The explicit form of the
function ψ(r)  was needed. 
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Conclusions

* The propagation of perturbations of a nonlinear theory is 
governed by the effective metric, which depends  of the 
nonlinearity of the theory and of the background solution.

* In the case of a test scalar field in stationary accretion on a 
Schwarzschild bh, the sign of the time derivative of the  
energy of the perturbations can be determined through a 
surface integral, that depends only of the sign of the radial 
derivative of the background solution at r

s
. 

* Using this integral plus the positivity of the energy of the 
perturbations, we showed that  the model by Frolov is stable 
under high-energy perts.

* The result coincides with the numerical analysis of the 
nonlinear stability of particular solutions (Akhoury et al 
2011). 
●
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* The integral method requires less calculations than the 
traditional method of the effective potential.

* The method yields a necessary and sufficient condition, while 
V

eff
 > 0  is a sufficient condition.

* Only the sign of the radial derivative of the solution at  r
s  

is 
needed. 

* Near-horizon behaviour of the fields? Generalization to angular 
momentum? Work in progress with Azucena Paz Rivasplata and 
Rodrigo Maier). 
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